
antibiotics

Review

Biocidal Agents Used for Disinfection Can Enhance
Antibiotic Resistance in Gram-Negative Species

Günter Kampf

University Medicine Greifswald, Institute for Hygiene and Environmental Medicine,
17475 Greifswald, Germany; guenter.kampf@uni-greifswald.de

Received: 20 November 2018; Accepted: 11 December 2018; Published: 14 December 2018 ����������
�������

Abstract: Biocidal agents used for disinfection are usually not suspected to enhance cross-resistance
to antibiotics. The aim of this review was therefore to evaluate the effect of 13 biocidal agents
at sublethal concentrations on antibiotic resistance in Gram-negative species. A medline search
was performed for each biocidal agent on antibiotic tolerance, antibiotic resistance, horizontal
gene transfer, and efflux pump. In cells adapted to benzalkonium chloride a new resistance was
most frequently found to ampicillin (eight species), cefotaxime (six species), and sulfamethoxazole
(three species), some of them with relevance for healthcare-associated infections such as Enterobacter
cloacae or Escherichia coli. With chlorhexidine a new resistance was often found to ceftazidime,
sulfamethoxazole and imipenem (eight species each) as well as cefotaxime and tetracycline (seven
species each). Cross-resistance to antibiotics was also found with triclosan, octenidine, sodium
hypochlorite, and didecyldimethylammonium chloride. No cross-resistance to antibiotics has been
described after low level exposure to ethanol, propanol, peracetic acid, polyhexanide, povidone
iodine, glutaraldehyde, and hydrogen peroxide. Taking into account that some biocidal agents used
in disinfectants have no health benefit (e.g., in alcohol-based hand rubs) but may cause antibiotic
resistance it is obvious to prefer products without them.
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1. Introduction

Biocidal agents used for disinfection are one of many elements to limit the spread of antibiotic
resistant bacteria. Most users of disinfectants would not expect that biocidal agents may cause antibiotic
resistance themselves. Triclosan is such an example. It was used for decades in antimicrobial soaps in
the US and considered to be safe and effective [1]. But in 2016 19 active ingredients including triclosan
were banned by the US Food and Drug Administration for antimicrobial soaps used at home by the
general population [2]. The decision was justified by associated risks including antibiotic resistance
and a lack of a health benefit: “A risk must be balanced that demonstrate a direct clinical benefit
(i.e., a reduction of infection)—that the product is superior to washing with non-antibacterial soap
and water in reducing infection.” The scientific community welcomed the decision: “We applaud
this rule specifically because of the associated risks that triclosan poses to the spread of antibiotic
resistance throughout the environment. This persistent chemical constantly stresses bacteria to adapt,
and behavior that promotes antibiotic resistance needs to be stopped immediately when the benefits
are null” [3].

Other biocidal agents used for disinfection in healthcare, veterinary medicine, food production,
food handling or in the domestic setting may also have a risk of enhancing antibiotic resistance,
especially during low level exposure [4]. Persistence of the biocidal agent is certainly an advantage
for an adaptive response. However, there is currently a lack of awareness in the infection control
community that some biocidal agents may have a larger risk for promoting antibiotic resistance than
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others. The aim of the review is therefore to summarize data on the development of antibiotic tolerance
and resistance, changes of horizontal gene transfer, induction of antibiotic resistance genes, and the
effect on common efflux pump genes in Gram-negative species caused by low level exposure to
commonly used biocidal agents.

The following biocidal agents were reviewed: triclosan, benzalkonium chloride,
hydrogen peroxide, glutaraldehyde, ethanol, chlorhexidine digluconate, sodium hypochlorite,
didecyldimethylammonium chloride (DDAC), octenidine, peracetic acid, propanol, polihexanide,
and povidone iodine. The medline search for “horizontal gene transfer”, antibiotic, and each biocidal
agent on 31 August 2018 revealed four hits for hydrogen peroxide, three hits for ethanol, three hits
for chlorhexidine digluconate, two hits for triclosan, one hit for benzalkonium chloride, and 0 hits
for glutaraldehyde, sodium hypochlorite, propanol, povidone iodine, peracetic acid, polihexanide,
DDAC and octenidine. The medline search for “cross tolerance”, antibiotic, and each biocidal agent on
19 November 2018 revealed five hits for benzalkonium chloride and hydrogen peroxide, three hits for
ethanol, two hits for sodium hypochlorite and povidone iodine, one hit for chlorhexidine digluconate
and polihexanide, and 0 hits for propanol, DDAC, octenidine, and peracetic acid. The medline
search for “cross resistance”, antibiotic and each biocidal agent on 19 November 2018 revealed 44 hits
for triclosan, 36 hits for benzalkonium chloride, 32 hits for hydrogen peroxide, 23 hits for ethanol,
22 hits for povidone iodine, 19 hits for glutaraldehyde, 11 hits for sodium hypochlorite, eight hits for
chlorhexidine digluconate, seven hits for peracetic acid, five hits for triclosan, two hits for propanol,
polihexanide, octenidine, and glutaraldehyde, and one hit for DDAC. The medline search for “efflux
pump”, antibiotic and each biocidal agent on 19 November 2018 revealed 35 hits for triclosan,
31 hits for benzalkonium chloride, 10 hits for hydrogen peroxide, three hits for glutaraldehyde and
ethanol, two hits for chlorhexidine digluconate, one hit for sodium hypochlorite and 0 hits for DDAC,
octenidine, peracetic acid, propanol, polihexanide, and povidone iodine.

Publications were included and results were extracted from them when they provided original
data on an adaptive response to the exposure of Gram-negative bacteria to sublethal concentrations
of the biocidal agents described above resulting in a tolerance or resistance to antibiotics including
antibiotic resistance gene changes, in a change of efflux pump activity or horizontal gene transfer.
Articles were excluded when they described changes in Gram-positive species, fungi or mycobacteria.
Reviews were also excluded but screened for any information within the scope of the review.

2. Benzalkonium Chloride

2.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure

In one study it was described that exposure of Escherichia coli to low level benzalkonium chloride
can increase the tolerance to benzalkonium chloride 2.6-fold and in addition also 3.3-fold to 7-fold to
various antibiotics. A classification to susceptibility categories, however, was not found (Table 1).

In 11 studies an associated increase of tolerance or a new resistance to antibiotics was described
for some Gram-negative species (Table 2). A new resistance was most frequently found to ampicillin
(eight species), cefotaxime (six species), and sulfamethoxazole (three species). For two species a
new antibiotic resistance was detected for ceftazidime, trimethoprim-sulfamethoxazol, trimethoprim,
tetracycline, imipenem, chloramphenicol, amoxicillin, or amoxicillin-clavulanic acid. Only one species
was resistant to nalidixic acid or ceftriaxone. Among the species some have a major relevance for
healthcare-associated infections such as Enterobacter cloacae or Escherichia coli.
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Table 1. Gram-negative species with increased antibiotic tolerance after various types of low level
exposure (<MIC value) to benzalkonium chloride (BAC).

Species Strain(s) MIC Increase
(BAC) Antibiotic(s) MIC Increase

(Antibiotic) Reference

Escherichia coli
ATCC 25922

and 9 avian and
porcine strains

2.6-fold

Florfenicol
Cefotaxime

Chloramphenicol
Ceftazidime

Nalidixic acid
Ampicillin

Tetracycline
Ciprofloxacin

Sulfamethoxazole
Trimethoprim

7-fold 1

6.3-fold 1

6.1-fold 1

4.8-fold 1

4.4-fold 1

4.3-fold 1

4.2-fold 1

3.8-fold 1

3.7-fold 1

3.3-fold 1

[5]

1 microdilution method (mg/L).
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Table 2. Gram-negative species with antibiotic resistance after various types of low level exposure (<MIC value) to BAC.

Species Strain(s) MIC Increase
(BAC) Antibiotic(s) Pre-Value Post-Value Category Reference

Burkholderia
cepacia complex

B. lata strain 383
(4 experiments) -

Imipenem
Meropenem

Ciprofloxacin
Ceftazidime
Tobramycin

24 1

40.7 1

30 1

40.3 1

7.3 1

16 (1) 1

34–35.5 (2) 1

12–24 (2) 1

12 (1) 1

0 (1) 1

-
-
-
-
-

[6]

Chryseobacterium spp. Biocide-sensitive strain
from organic foods 20-fold Ampicillin - 641 R [7]

Enterobacter cloacae Two biocide-sensitive
strains from organic foods 12-fold–30-fold Cefotaxime

Ampicillin
-
-

128 (1) 1

64 (1) 1
R
R [7]

Enterobacter ludwigii Biocide-sensitive strain
from organic foods 30-fold Cefotaxime - 128 1 R [7]

Enterobacter spp. Six biocide-sensitive
strains from organic foods 5-fold–300-fold

Ampicillin
Sulfamethoxazol

Ceftazidime
Cefotaxime

Trimethoprim-sulfamethoxazol

-
-
-
-
-

64 (5) 1

1014 (2) 1

64 (1) 1

64 (1) 1

8/152 (1) 1

R
R
R
R
R

[7]

Escherichia coli ATCC 11775 6-fold

Ampicillin
Chloramphenicol

Erythromycin
Gentamicin
Kanamycin

Nalidixic acid
Norfloxacin

Penicillin
Tetracycline

10 1

10 1

140 1

2 1

8 1

8 1

0.15 1

250 1

4 1

50 1

240 1

180 1

4 1

16 1

30 1

0.4 1

400 1

16 1

-
-
-
-
-
-
-
-
-

[8]

Escherichia coli DSM 682 6-fold

Ampicillin
Chloramphenicol

Erythromycin
Gentamicin
Kanamycin

Nalidixic acid
Norfloxacin

Penicillin
Tetracycline

5 1

5 1

100 1

2 1

10 1

4 1

0.1 1

100 1

4 1

20 1

60 1

160 1

4 1

10 1

30 1

0.15 1

200 1

6 1

-
-
-
-

n.a.
-
-
-
-

[8]

Escherichia coli ATCC 47076 6-fold–7-fold

Chloramphenicol
Florfenicol

Ciprofloxacin
Nalidixic acid

Ampicillin
Cefotaxime

8 1

8 1

0.06 1

8 1

4 1

0.06 1

8–128 1

16–64 1

0.25 1

32–64 1

4–8 1

0.12–0.5 1

-
-
-
-
-
-

[9]
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Table 2. Cont.

Species Strain(s) MIC Increase
(BAC) Antibiotic(s) Pre-Value Post-Value Category Reference

Escherichia coli NCTC 12900 strain O157 Approx. 100-fold

Amoxicillin-clavulanic acid
Amoxicillin

Chloramphenicol
Ciprofloxacin
Clindamycin

Colistin sulfate
Erythromycin
Fusidic acid
Gentamicin
Imipenem
Rifampicin
Tetracycline

Trimethoprim
Vancomycin

12 2

12 2

19 2

14 2

0 2

10 2

4 2

0 2

13 2

15 2

5 2

10 2

14 2

0 2

0 2

0 2

0 2

14 2

0 2

104 2

0 2

13 2

10 2

5 2

4 2

0 2

0 2

R
R
R

n. a.
n. a.
n. a.
n. a.
n. a.
n. a.

R
n. a.

R
R

n. a.

[10]

Escherichia coli and
Salmonella spp.

(non-typhoidal)

12 pan-susceptible strains
(6 per species) 24% 4

Tetracycline
Ciprofloxacin

Chloramphenicol
Trimethoprim-Sulfamethoxazol

Ampicillin
Gentamicin

2.4 3,4

0.03 3,4

6.5 3,4

0.09 3,4

18.6 2,4

1.1 3,4

23.3 3,4

0.11 3,4

13.7 3,4

0.14 3,4

12.0 2,4

1.3 3,4

R (5)
S

I (6)
S

R (6)
S

[11]

Klebsiella oxytoca Biocide-sensitive strain
from organic foods 3-fold

Ampicillin
Cefotaxime

Ciprofloxacin
Imipenem

Ceftazidime
Tetracycline

Trimethoprim-Sulfamethoxazol
Sulfamethoxazol

Nalidixic acid

No cross-tolerance 1

(all antibiotics)
n. a. [7]

Klebsiella spp. Biocide-sensitive strain
from organic foods 36-fold Ampicillin - 64 1 R [7]

Pantoea agglomerans Four biocide-sensitive
strains from organic foods 20-fold–70-fold

Ampicillin
Ceftazidime
Cefotaxime

-
-
-

64 (4) 1

32–64 (2) 1

128 (1) 1

R
R
R

[7]

Pantoea ananatis Biocide-sensitive strain
from organic foods 25-fold

Ampicillin
Cefotaxime

Sulfamethoxazol

-
-
-

64 1

64 1

1024 1

R
R
R

[7]

Pantoea spp. Three biocide-sensitive
strains from organic foods 100-fold–500-fold

Ampicillin
Cefotaxime

Sulfamethoxazol

-
-
-

64 (1) 1

128 (1) 1

1024 (1) 1

R
R
R

[7]



Antibiotics 2018, 7, 110 6 of 24

Table 2. Cont.

Species Strain(s) MIC Increase
(BAC) Antibiotic(s) Pre-Value Post-Value Category Reference

Pseudomonas
aeruginosa

22 isolates from biofilm
samples in dairy ≤2.2-fold Ciprofloxacin 0.25–32 1 3.5–55 1,5 - [12]

Pseudomonas
aeruginosa Strain NCIMB 10421 12-fold

Amikacin
Ceftazidime

Ciprofloxacin
Gentamycin
Imipenem
Ticarcillin

3.5 3

2 3

0.125 3

2.5 3

2 3

0.875 3

1.75 3

0.44 3

0.047 3

0.75 3

0.5 3

0.285 3

n. a.
n. a.
n. a.
n. a.
n. a.
n. a.

[13]

Pseudomonas
aeruginosa Strain NCIMB 10421 >12-fold

Ciprofloxacin
Tobramycin
Minocycline
Aztreonam

Polymyxin B
Amikacin

Gentamicin
Vancomycin
Imipenem

0.125 3

1.5 3

>128 3

3 3

4 3

8 3

4 3

>128 3

2 3

32 3

1.0 3

16 3

3 3

2 3

6 3

6 3

>128 3

2 3

-
-
-
-
-
-
-
-
-

[14]

Pseudomonas
aeruginosa

Isolate from
river sediment 4-fold Polymyxin B 0.2–0.4 1 0.8–1.6 1 - [15]

Salmonella Enteritidis Clinical isolate Approx. 200-fold Various antibiotics No cross-resistance 2 n.a. [10]

Salmonella Hvittingfoss Strain S41 4-fold

Ampicillin
Amoxicillin-clavulanic acid

Piperacillin
Cephalexin

Cefpodoxime
Ceftiofur

Ceftriaxone
Tetracycline

Ciprofloxacin
Chloramphenicol

Cefoxitin
Nalidixic acid

<2 6

<2 6

<4 6

<4 6

<0.25 6

<1 6

<0.25 6

<1 6

0.06 6

4 6

8 6

4 6

16 6

4 6

64 6

16 6

2 6

>8 6

2 6

8 6

0.5 6

16 6

>32 6

32 6

I
-
I
I
I
I
R
I
I
I
-
R

[16]
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Table 2. Cont.

Species Strain(s) MIC Increase
(BAC) Antibiotic(s) Pre-Value Post-Value Category Reference

Salmonella
Typhimurium NCTC 74 Approx. 10-fold

Amoxicillin-clavulanic acid
Amoxicillin

Chloramphenicol
Ciprofloxacin
Clindamycin

Colistin sulfate
Erythromycin
Fusidic acid
Gentamicin
Imipenem
Rifampicin
Tetracycline

Trimethoprim
Vancomycin

14 2

15 2

15 2

13 2

0 2

9 2

0 2

0 2

13 2

17 2

4 2

6 2

13 2

0 2

14 2

14 2

15 2

15 2

0 2

9 2

0 2

0 2

11 2

16 2

4 2

9 2

13 2

0 2

n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.

[10]

Salmonella Virchow Food isolate Approx. 200-fold

Amoxicillin-clavulanic acid
Amoxicillin

Chloramphenicol
Ciprofloxacin
Clindamycin

Colistin sulfate
Erythromycin
Fusidic acid
Gentamicin
Imipenem
Rifampicin

TetracyclineTrimethoprim
Vancomycin

16 2

16 2

14 2

0 2

0 2

9 2

4 2

0 2

16 2

16 2

5 2

8 2

14 2

0 2

0 2

1 2

2 2

0 2

0 2

11 2

4 2

0 2

15 2

12 2

5 2

8 2

0 2

0 2

R
R
R

n. a.
n. a.
n. a.
n. a.
n. a.
n. a.

R
n. a.
n. a.

R
n. a.

[10]

1 microdilution method (mg/L); 2 disc diffusion test (mm); 3 Etest (mg/L); 4 mean; 5 no conclusive cross-resistance; 6 NARMS plates; “-” = no information; R = resistant; I = intermediate
susceptible; S = susceptible; n. a. = not applicable; () = number of strains, isolates or experiments.
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2.2. Effect on Antibiotic Resistance Genes

Benzalkonium chloride has been described to co-select for other antimicrobial resistance genes [17].

2.3. Increase of Horizontal Gene Transfer

The general possibility of horizontal gene transfer for the spread of antibiotic and biocide
resistance has been described already in 2001 [18]. In two of 179 Escherichia coli isolates from retail
food qacH-associated integrons associated with tolerance to benzalkonium chloride located on 100 kb
plasmids could be transferred to an E. coli recipient, indicating the co-existence and co-dissemination
of disinfectant and antimicrobial resistance genes among bacterial species [19].

2.4. Induction of Common Efflux Pumps

In Pseudomonas aeruginosa, benzalkonium chloride can induce the MexCD-OprJ multidrug
efflux pump [20].

2.5. Additional Findings

Some other studies demonstrate a correlation between tolerance to benzalkonium chloride and
resistance to various antibiotics. In 153 Escherichia coli blood culture isolates, for example, a higher
MIC of benzalkonium chloride was associated with a decreased susceptibility to cotrimoxazole [21].
In 52 Pseudomonas spp. from meat chain production, a correlation between resistance to benzalkonium
chloride and ampicillin, amoxicillin, erythromycin, and trimethoprim was found [22]. Repeated
in vitro exposure of Salmonella Typhimurium cells to quaternary ammonium compounds selects for a
higher tolerance to chloramphenicol, tetracycline, ampicillin, and acriflavine which is explained by an
overexpression of the AcrAB efflux pump [23]. Few other studies do not describe such a correlation.
No correlation between multiple antibiotic-resistant bacteria and a tolerance to benzalkonium chloride
was found in 122 isolates of Salmonella spp. from poultry and swine [24]. In analogy, no association
between resistance to multiple antibiotic and quaternary ammonium compounds was found in
103 Gram-negative clinical isolates [25]. One of the reasons for a cross-resistance with benzalkonium
chloride is a multidrug efflux protein MdtM which was detected in E. coli. It belongs to the large and
ubiquitous major facilitator superfamily (MFS). Benzalkonium chloride, didecyldimethylammonium
chloride and some antibiotics are among the substrates transported by MdtM [26]. It was also shown
with E. coli that many redundant multidrug resistance transporters also enhance biofilm formation
and drug tolerance including benzalkonium chloride [27]. Efflux pumps also explain resistance to
benzalkonium chloride in P. aeruginosa [12]. In P. fluorescens high level resistance to benzalkonium
chloride was also explained by an efflux system which excretes only specific cationic disinfectants
belonging to the group of quaternary ammonium compounds [28]. Over-expression of efflux pumps
AcrAB or AcrEF was detected in benzalkonium chloride-resistant mutants of S. Typhimurium [29].

3. Chlorhexidine Digluconate

3.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure

Six studies indicate that low level chlorhexidine exposure quite often results in an antibiotic
resistance, so far mainly described in biocide-sensitive strains from organic foods (Table 3). A new
resistance was most frequently found to ceftazidime, sulfamethoxazole, and imipenem (eight species
each) as well as cefotaxime and tetracycline (seven species each). For two species a new antibiotic
resistance was detected for ampicillin. Only one species was finally resistant to nalidixic acid, colistin,
or tobramycin. Among the species some have also relevance for healthcare such as Enterobacter cloacae,
Escherichia coli, or Klebsiella pneumoniae.
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Table 3. Gram-negative species with antibiotic resistance after various types of low level exposure (<MIC value) to chlorhexidine digluconate (CHG).

Species Strain(s) MIC Increase
(CHG) Antibiotic(s) Pre-Value Post-Value Category Reference

Bacteroides fragilis ATCC 25285 -

Ampicillin
Cefoxitin

Cefoperazone
Chloramphenicol

Metronidazole
Norfloxacin
Tetracycline

46 1

7 1

52 1

2 1

0.6 1

0.6 1

0.6 1

77 1

13 1

126 1

2 1

0.9 1

0.9 1

2 1

-
-
-
-
-
-
-

[30]

Burkholderia cepacia
complex B. lata strain 383 -

Imipenem
Meropenem

Ciprofloxacin
Ceftazidime
Tobramycin

24 2

40.7 2

30 2

40.3 2

7.3 2

15–21 (2) 2

33 (1) 2

11–20 (2) 2

30–33 (2) 2

-

-
-
-
-
-

[6]

Chrysobacterium spp.
2 biocide-sensitive

strains from
organic foods

5-fold–6-fold

Ampicillin
Cefotaxime
Ceftazidime

Sulfamethoxazol
Tetracycline

-
-
-
-
-

64 (1) 2

128 (2) 2

64 (2) 2

1024 (1) 2

16 (1) 2

R
R
R
R
R

[31]

Enterobacter cloacae
2 biocide-sensitive

strains from
organic foods

10-fold–16-fold

Cefotaxime
Ceftazidime
Imipenem

Sulfamethoxazol
Tetracycline

-
-
-
-
-

64 (1) 2

64 (2) 2

16 (2) 2

1024 (2) 2

32 (1) 2

R
R
R
R
R

[31]

Enterobacter ludwigii
2 biocide-sensitive

strains from
organic foods

6-fold–8-fold
Ceftazidime
Imipenem

Sulfamethoxazol

-
-
-

64 (2) 2

16 (2) 2

1024 (2) 2

R
R
R

[31]

Enterobacter spp.
6 biocide-sensitive

strains from
organic foods

4-fold–10-fold

Cefotaxime
Ceftazidime
Imipenem

Sulfamethoxazol

-
-
-
-
-

64 (1) 2

128 (1) 2

64 (3) 2

16 (3) 2

1024 (2) 2

R
R
R
R
R

[31]

Escherichia coli NCIMB 8545 ≤6-fold Tobramycin - - 2 R 3 [32]
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Table 3. Cont.

Species Strain(s) MIC Increase
(CHG) Antibiotic(s) Pre-Value Post-Value Category Reference

Escherichia coli NCTC 12900
strain O157 Approx. 50-fold Various antibiotics No cross-resistance 4 n.a. [10]

Klebsiella oxytoca
2 biocide-sensitive

strains from
organic foods

2-fold–8-fold Various antibiotics No cross-resistance 2 n.a. [31]

Klebsiella pneumoniae

6 clinical strains
with a variety of

antibiotic
resistance markers

4-fold–16-fold

Azithromycin
Cefepime
Colistin

Teicoplanin

8–64 (6)
0.06–0.125 (1)

≥64 (5)
2–4 (6)
>64 (6)

8–64 (6) 2

0.06–0.5 (2) 2

≥64 (4) 2

>64 (5) 2

>64 (6) 2

n.a.
n.a.
n.a.
R

n.a.

[33]

Klebsiella spp.
Biocide-sensitive

strain from
organic foods

2-fold Ceftazidime
Imipenem

-
-

64 2

16 2
R
R [31]

Pantoea agglomerans
5 biocide-sensitive

strains from
organic foods

5-fold–10-fold

Cefotaxime
Ceftazidime
Imipenem

Sulfamethoxazol
Tetracycline

-
-
-
-
-

64–128 (3) 2

64 (3) 2

16 (1) 2

1024 (2) 2

16–32 (2) 2

R
R
R
R
R

[31]

Pantoea ananatis
2 biocide-sensitive

strains from
organic foods

10-fold–50-fold

Cefotaxime
Ceftazidime
Imipenem

Sulfamethoxazol
Tetracycline

-
-
-
-
-

64–128 (2) 2

64 (1) 2

16 (1) 2

1024 (1) 2

16 (1) 2

R
R
R
R
R

[31]

Pantoea spp.
3 biocide-sensitive

strains from
organic foods

5-fold–16-fold

Ampicillin
Cefotaxime
Ceftazidime
Imipenem

Sulfamethoxazol
Tetracycline

-
-
-
-
-
-

32 (1) 2

128 (1) 2

64 (1) 2

16 (1) 2

1024 (1) 2

16–32 (2) 2

R
R
R
R
R
R

[31]

Salmonella Virchow Food isolate Approx. 10-fold Various antibiotics No cross-resistance 4 n.a. [10]
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Table 3. Cont.

Species Strain(s) MIC Increase
(CHG) Antibiotic(s) Pre-Value Post-Value Category Reference

Salmonella spp.
3 biocide-sensitive

strains from
organic foods

5-fold–10-fold

Cefotaxime
Imipenem

Nalidixic acid
Sulfamethoxazol

Tetracycline

-
-
-
-

128 (2) 2

16 (2) 2

64 (2) 2

1024 (1) 2

32 (1) 2

R
R
R
R
R

[31]

Salmonella spp.
6 strains with

higher MICs to
biocidal products

50-fold–200-fold
(2 strains)

Tetracycline
Chloramphenicol

Nalidixic acid

<1 4

4 4

4 4

>16 (1) 5

8 (1) 5

16 (1) 5

R
I
I

[16]

1 spiral gradient endpoint method (mg/L); 2 microdilution method (mg/L); 3 unstable; 4 disc diffusion test (mm); 5 NARMS plates (mg/L); - no information; R = resistant; I = intermediate
susceptible; S = susceptible; () number of strains or isolates.
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3.2. Increase of Horizontal Gene Transfer

Horizontal transfer of mobile antibiotic resistance elements by conjugation could be significantly
increased by low level exposure to chlorhexidine digluconate (24.4 µg/L) to a recipient Escherichia coli
strain [34]. In addition, an additional sh-fabI allele was detected in clinical isolates of
Staphylococcus aureus derived from Staphylococcus haemolyticus suggesting a high potential of its
horizontal gene transfer [35].

3.3. Induction of Common Efflux Pumps

Chlorhexidine was able to induce the expression of 6 efflux pump genes (bmeB1, bmeB3, bmeB4,
bmeB7, bfrA1 and bfrA2) in Bacteroides fragilis ATCC 25285 exposed for 12 h to 0.06% chlorhexidine [30].
It can also induce the MexCD-OprJ multidrug efflux pump in Pseudomonas aeruginosa [20,36].

3.4. Additional Findings

A similar overall result was found for low level chlorhexidine exposure. Some additional
studies demonstrate a correlation between tolerance to chlorhexidine and resistance to various
antibiotics. A positive correlation between resistance to some biocidal agents (cetrimide,
chlorhexidine, hexachlorophene) and to antibiotics was described in 1991 for Serratia marcescens
and Alcaligenes spp. [37]. In 49 Acinetobacter baumannii strains with a reduced susceptibility to
chlorhexidine a co-resistance to carbapenem, aminoglycoside, tetracyclin, and ciprofloxacin was
found [38]. In Bacteroides fragilis multiple antibiotic resistance was induced by a 2.7–6.0-fold increase
of 6 efflux pumps [30]. In an Escherichia coli strain an unstable resistance to tobramycin was detected
after low level exposure to chlorhexidine for up to 24 h [32]. In Trinidad 11 of 120 chlorhexidine
solutions were found to be contaminated with Pseudomonas spp., with resistance rates to ciprofloxacin
of 58.3%, to norfloxacin of 50.0%, to tobramycin of 45.8%, and to gentamicin with 41.7% [39]. In a
chlorhexidine-resistant Pseudomonas stutzeri isolate a cross-resistance to polymyxin and gentamicin
was found [40]. A study with six other Pseudomonas stutzeri strains revealed a cross-resistance to
ampicillin in five strains, to polymyxin in four strains, to erythromycin in three strains, and to
nalidixic acid and gentamicin in two strains after low level exposure to chlorhexidine diacetate
for six weeks [41]. Some authors found no cross-resistance between chlorhexidine and antibiotics.
For example, no correlation was found between the susceptibility to chlorhexidine and 10 different
antibiotics among 101 genetically distinct isolates of the B. cepacia complex [42]. No cross-resistance
was found between chlorhexidine and five antibiotics in 130 Salmonella spp. from two turkey
farms [43]. And no correlation between resistance to chlorhexidine and 16 different antibiotics was
found in 52 Pseudomonas spp. from meat chain production [22]. A possible cross-resistance between
chlorhexidine and antibiotics is discussed controversially [44,45]. As an example, the widespread
use of chlorhexidine has not yet resulted in a clinically relevant resistance to antibiotics [46,47] even
though the development of resistance to these agents is regarded as realistic [48].

4. Triclosan

4.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure

Five studies indicate that low-level triclosan exposure may cause antibiotic resistance, so far
also mainly described in biocide-sensitive strains from organic foods (Table 4). A new resistance was
most frequently found to sulfamethoxazole (five species), ampicillin or cefotaxime (four species each)
and ceftazidime, trimethoprim or chloramphenicol (three species). For two species a new antibiotic
resistance was detected for amoxicillin-clavulanic acid, trimethoprim-sulfamethoxazol, amoxicillin,
nalidixic acid, tetracycline, or imipenem. Only one species was resistant to erythromycin, ceftiofur, or
cefoxitin. One of the species has a major relevance for healthcare-associated infections (Escherichia coli).
The effect in Escherichia coli is partly explained by changes in bacterial membrane properties and
enhancing the efflux system [49].
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Table 4. Gram-negative species with antibiotic resistance after various types of low level exposure (<MIC value) to triclosan (TRI).

Species Strain(s) MIC Increase (TRI) Antibiotic(s) Pre-Value Post-Value Category Reference

Actinomyces naeslundii Strain WVU627 4.9-fold Metronidazole
Tetracycline

125 1

5.2 1
125 1

7.8 1
-
- [50]

Enterobacter spp.
5 biocide-sensitive

strains from
organic foods

2-fold–15-fold

Ampicillin
Cefotaxime
Ceftazidime

Sulfamethoxazol

-
-
-
-

64 (2) 1

128 (1) 1

64 (2) 1

1024 (2) 1

R
R
R
R

[51]

Escherichia coli ATCC 8729 391-fold Metronidazole
Tetracycline

250 1

15.6 1
125 1

10.4 1
-
- [50]

Escherichia coli NCTC 12900
strain O157

16-fold (P1)8192-fold
(P2)

Amoxicillin-clavulanic acid
Amoxicillin

Chloramphenicol
Ciprofloxacin
Clindamycin

Colistin sulfate
Erythromycin
Fusidic acid
Gentamicin
Imipenem
Rifampicin
Tetracycline

Trimethoprim
Vancomycin

11 2

13 2

13 2

14 2

0 2

9 2

7 2

0 2

12 2

15 2

5 2

17 2

13 2

0 2

0 2

0 2

5 2

14 2

0 2

10 2

0 2

0 2

12 2

11 2

5 2

14 2

0 2

0 2

R
R
R

n. a.
n. a.
n. a.

R
n. a.
n. a.

R
n. a.

R
R

n. a.

[10]

Escherichia coli ATCC 27325 4096-fold

Amoxicillin
Amoxicillin-clavulanic acid

Chloramphenicol
Ciprofloxacin
Clindamycin

Colistin sulfate
Fusidic acid
Gentamicin
Rifampicin
Tetracycline

Trimethoprim
Vancomycin

8 1

8 1

16 1

4 1

>256 1

16 1

>256 1

8 1

256 1

32 1

32 1

>256 1

8 1

8 1

256 1

4 1

>256 1

16 1

>256 1

8 1

256 1

32 1

32 1

>256 1

n. a.
n. a.

R
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.

[52]
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Table 4. Cont.

Species Strain(s) MIC Increase (TRI) Antibiotic(s) Pre-Value Post-Value Category Reference

Escherichia coli Strain O55:H7 2048-fold

Amoxicillin
Amoxicillin-clavulanic acid

Chloramphenicol
Ciprofloxacin
Clindamycin

Colistin sulfate
Fusidic acid
Gentamicin
Rifampicin
Tetracycline

Trimethoprim
Vancomycin

8 1

16 1

16 1

2 1

>256 1

16 1

>256 1

8 1

>256 1

32 1

32 1

0 1

8 1

8 1

8 1

2 1

>256 1

16 1

>256 1

16 1

>256 1

32 1

256 1

0 1

n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.

R
n. a.

[52]

Escherichia coli NCTC 12900 8192-fold

Amoxicillin
Amoxicillin-clavulanic acid

Chloramphenicol
Ciprofloxacin
Clindamycin

Colistin sulfate
Fusidic acid
Gentamicin
Rifampicin
Tetracycline

Trimethoprim
Vancomycin

32 1

4 1

32 1

2 1

>256 1

8 1

>256 1

16 1

>256 1

32 1

64 1

0 1

>256 1

256 1

256 1

2 1

>256 1

16 1

>256 1

16 1

>256 1

>256 1

>256 1

0 1

R
R
R

n. a.
n. a.
n. a.
n. a.
n. a.
n. a.

R
R

n. a.

[52]

Fusobacterium
nucleatum ATCC 10953 None Metronidazole

Tetracycline
250 1

3.9 1
500 1

2.9 1
-
- [50]

Neisseria subflava Strain A1078 None Metronidazole
Tetracycline

62.5 1

3.9 1
52.1 1

6.8 1
-
- [50]

Pantoea agglomerans
Biocide-sensitive

strain from
organic foods

150-fold
Ampicillin

Ceftazidime
Sulfamethoxazol

-
-
-

64 1

64 1

1024 1

R
R
R

[51]

Pantoea ananatis
2 biocide-sensitive

strains from
organic foods

5-fold–
200-fold

Sulfamethoxazol
Trimethoprim-sulfamethoxazol

Ampicillin
Cefotaxime

-
-
-
-

1024 (2) 1

8/152 (2) 1

32 (1) 1

64 (1) 1

R
R
R
R

[51]
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Table 4. Cont.

Species Strain(s) MIC Increase (TRI) Antibiotic(s) Pre-Value Post-Value Category Reference

Pantoea spp.
2 biocide-sensitive

strains from
organic foods

2-fold–3-fold
Sulfamethoxazol

Ceftazidime
Cefotaxime

-
-
-

1024 (1) 1

64 (1) 1

128 (1) 1

R
R
R

[51]

Porphyromonas
gingivalis Strain W50 None Metronidazole

Tetracycline
31.3 1

3.0 1
62.5 1

1.0 1
-
- [50]

Prevotella nigrescens Strain T588 2-fold Metronidazole
Tetracycline

62.5 1

1.0 1
62.5 1

1.0 1
-
- [50]

Salmonella spp.
3 biocide-sensitive

strains from
organic foods

2-fold–
200-fold

Trimethoprim-sulfamethoxazol
Cefotaxime

Nalidixic acid
Ampicillin

Sulfamethoxazol
Imipenem

-
-
-
-
-
-

8/152 (2) 1

64/128 (2) 1

64 (2) 1

64 (1) 1

1024 (1) 1

32 (1) 1

R
R
R
R
R
R

[51]

Salmonella spp.
6 strains with

higher MICs to
biocidal products

500-fold–
10.000-fold (3)

Piperacillin
Ceftiofur
Amikacin

Gentamicin
Kanamycin

Chloramphenicol
Cefoxitin

Nalidixic acid
Sulfisoxazole

<4 3

2 3

4 3

<1 3

<8 3

4 3

16 3

8 3

32 3

16 3

>8 3

16 3

4 3

32 3

16 3

32 3

32 3

>256 3

I
R
I
I
I
I
R
R
I

[16]

Veillonella dispar ATCC 17745 None Metronidazole
Tetracycline

78.1 1

31.3 1
31.3 1

27.4 1
-
- [50]

1 microdilution method (mg/L); 2 disc diffusion test (mm); 3 NARMS plates (mg/L); “-” = no information; R = resistant; I = intermediate susceptible; S = susceptible; n. a. = not applicable;
() = number of strains, isolates or experiments; (P1) = passage 1; (P2) = passage 2.
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4.2. Increase of Horizontal Gene Transfer

Horizontal transfer of mobile antibiotic resistance elements by conjugation could be significantly
increased by low level exposure to triclosan (0.1 mg/L) to a recipient Escherichia coli strain [34].

4.3. Additional Findings

Triclosan is also a biocidal agent which can enhance resistance to antibiotics in some
Gram-negative species. An associated cross-tolerance or cross-resistance between triclosan and various
antibiotics seems uncommon in Acinetobacter johnsonii and Escherichia coli [53] although one study has
described a cross-tolerance between triclosan and chloramphenicol (intermediate susceptibility) in an
Acinetobacter johnsonii strain [54]. Among 52 Pseudomonas spp. isolates from meat chain production,
a general cross-tolerance between triclosan and ampicillin, amoxicillin, erythromycin, imipenem and
trimethoprim was described [22]. Resistance in Salmonella caused by increasing concentrations of
triclosan is associated with an overexpression of the AcrAB efflux pump [23]. A possible mechanism
was shown with Agrobacterium tumefaciens where triclosan abolishes the interaction between the
transcriptional repressor of the acrABR operon (acrR) and the DNA to which acrR specifically binds
in the acrA promoter region [55]. A correlation between a decreased triclosan susceptibility and
multidrug-resistance was shown in 428 Salmonella enterica isolates. Four percent of the isolates were
triclosan-tolerant, 56% of them were multidrug-resistant. Among the remaining triclosan-sensitive
isolates only 12% were multidrug-resistant [56]. Efflux pumps were also considered to explain a lower
susceptibility to triclosan in antibiotic-resistant Escherichia coli and Salmonella spp. isolated from poultry
and clinical samples [57]. In the domestic setting no antibiotic and antibacterial agent cross-resistance
in target bacteria from antibacterial product users and nonusers was found [58].

5. Didecyldimethylammonium Chloride

5.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure

One study was found with data for 2 species (Table 5). 59% of 54 Escherichia coli strains became
multiresistant to antibiotics after low level didecyldimethylammonium chloride exposure whereas a
new resistance to at least one antibiotic occurred in only 13% of 54 Salmonella enterica strains.

Table 5. Gram-negative species with antibiotic tolerance or resistance after low level exposure (< MIC value)
to didecyldimethylammonium chloride (DDAC).

Species Strain(s) Type of DDAC
Exposure Antibiotic(s) Reference

Escherichia coli 54 strains from pig
faeces or pork meat

7 d at various
concentrations.

32 strains became multiresistant, most
of them with a new resistance 1 to

chloramphenicol, ampicillin,
cefotaxime, ceftazidime

and ciprofloxacin

[59]

Salmonella enterica 54 strains from pig
faeces or pork meat

7 d at various
concentrations

7 strains acquired a new resistance 1,
mainly to chloramphenicol (3 strains)

[59]

1 microdilution method (mg/L).

5.2. Additional Findings

Fewer data are available with didecyldimethylammonium chloride. Some studies
describe a cross-tolerance between didecyldimethylammonium chloride and antibiotics. For
example, in 153 E. coli blood culture isolates a higher MIC of didecyldimethylammonium
chloride was associated with a decreased susceptibility to cotrimoxazole [21]. In E. coli
didecyldimethylammonium chloride-MICs were positively correlated with MICs of piperacillin
and sulphamethoxazole-trimethoprim [60]. However exposure of A. baumannii, C. sakazakii, E. coli,
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P. aeruginosa and P. putida to increasing didecyldimethylammonium chloride concentrations over
14 passages of four days each did not result in antibiotic resistance [61].

6. Sodium Hypochlorite

6.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure

Some strains of Salmonella species, adapted to sodium hypochlorite, have occasionally
developed an associated resistance to specific antibiotics such as gentamicin in S. Anatum,
ceftazidime in S. Enteritidis, amikacin, ampicillin, chloramphenicol and nitrafurantoin in S. Hadar,
gentamicin, ceftazidime, amikacin, tobramycin, cefoxitin, and tetracycline in S. Infantis, amikacin
and ampicillin/sulbactam in S. Kentucky, gentamicin, ceftazidime, tobramycin, cefoxitin, cefazolin
and nalidixic acid in S. Thompson, amikacin, tobramycin, cefazolin, cefotaxime in S. Thyphimurium,
teicoplanin in S. Virchow, and gentamicin, nitrafurantoin, cephalothin, cefepime and enrofloxacin in
Salmonella spp. strain 1,4, [5],12:i- [62]. It is particularly interesting that an E. coli strain was found to be
viable but non-culturable after low level exposure to sodium hypochlorite and that the same adapted
cells were able to better persist in the presence of various antibiotics [63].

6.2. Effect on Antibiotic Resistance Genes

Sodium hypochlorite can reduce antibiotic resistance genes or plasmids to some extent (mostly
≤ 1.0 log). This effect has been shown with three antibiotic resistance genes (sul1, blaTEM, blaCTX-M)
which were reduced by 0.8–0.9 log. The antibiotic resistance plasmid pB10 from an E. coli strain was
also reduced by 1.0 log [64]. A somatic coliphage could be reduced in 30 min by at least 1.0 log.
The antibiotic resistance genes, however, were not significantly reduced (0.2–0.6 log) [65]. Similar
findings were reported with the tet(W) gene in Acinetobacter, Aeromonas, Chryseobacterium, E. coli,
Pseudomonas and Serratia. It was mostly reduced by 0.0–0.9 log immediately after exposure to sodium
hypochlorite, the effect was stronger in Acinetobacter (1.8 log) and Chryseobacterium (4.0 log) [66].
A higher concentration of active chlorine (range: 2–32 mg/L) decreases the abundance of antibiotic
resistance genes in wastewater linearly [67]. Bacteria may, however, persist after sodium hypochlorite
treatment. Survivors may outgrow from the biofilm which may increase the level of antibiotic resistance
genes in water. Sodium hypochlorite at 1 mg/L can destroy the piperazine ring of ciprofloxacin in
drinking water distribution systems. As a consequence, specific antibiotic resistance genes increased
in effluents (e.g., mexA and qnrS) and others increased in biofilms (qnrA and qnrB). These bacterial
genera seem to grow by transformation of ciprofloxacin chlorination products in drinking water
distribution systems [68].

7. Other Biocidal Agents

7.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure

Cross-tolerance between octenidine and gentamicin, colistin, amikacin, and tobramycin has been
described in a Pseudomonas aeruginosa isolate [69]. No cross-tolerance or cross-resistance to antibiotics
has so far been described after low level exposure to ethanol, propanol, peracetic acid, polyhexanide,
povidone iodine, glutaraldehyde, and hydrogen peroxide.

7.2. Effect on Antibiotic Resistance Genes

The data for peracetic acid are not so clear [70]. Peracetic acid in waste water was shown to
stimulate the selection of antibiotic resistance genes [71]. It was, however, not able to reduce nine
antibiotic resistance genes (ampC, mecA, ermB, sul1, sul2, tetA, tetO, tetW, vanA) in wastewater [72].
For triclosan, didecyldimethylammonium chloride, povidone iodine, octenidine, polyhexanide,
glutaraldehyde, hydrogen peroxide, ethanol, and propanol no data on a possible induction of antibiotic
resistance genes or a reduction of antibiotic resistance genes were found.
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7.3. Increase of Horizontal Gene Transfer

Production of hydrogen peroxide in cells of Streptococcus gordonii was shown to cause release
of extracellular DNA which may serve as a pool for novel genetic traits such as antimicrobial
resistance [73]. Hydrogen peroxide produced by one species is able to induce the DNA release by
another which has important implications for the role of hydrogen peroxide in interspecies horizontal
gene transfer [73]. Whether this finding has any relevance for extracellular low-level hydrogen
peroxide exposure is unknown. Low level chlorination of 0.3–0.5 mg/L chlorine was able to decrease
conjugative transfer of the RP4 plasmid in drinking water [74]. No effect on horizontal gene transfer
by low-level exposure was so far described for ethanol, propanol, peracetic acid, glutaraldehyde,
polihexanide, DDAC, octenidine, and povidone iodine.

7.4. Additional Findings

Hydrogen peroxide and peracetic acid were not among the biocidal agents with evidence that
low level exposure can cause antibiotic resistance. This is probably explained by their lower stability
which may make it more difficult for bacteria to adapt to the biocidal agents. Another advantage
for peracetic acid in this context is that it was able to transform different beta-lactam antibiotics in
wastewater at concentrations of 0.0005–0.002% which may help to reduce antibiotic selection pressure
in wastewater [75].

8. Discussion

The health burden of five types of infection with antibiotic-resistant bacteria is high in Europe
with an estimated 671,689 infections in 2015, of which 63.5% were associated with healthcare [76].
Antibiotic resistance caused by some biocidal agents is very likely of minor relevance in this context.
But nevertheless it seems necessary to critically review disinfectant formulations with the aim to ban
any unnecessary selection pressure.

One example is alcohol-based hand rubs. Some products contain in addition to the alcohol(s)
non-volatile biocidal agents such as chlorhexidine digluconate, triclosan, benzalkonium chloride,
didecyldimethylammonium chloride, polihexanide, or octenidine dihydrochloride [77]. A recent
review with some of the agents shows that all formulations containing such an additional biocidal
agent fail to show a superior bactericidal efficacy according to EN 12791 after three hours under the
surgical glove [78]. In addition, a health benefit (e.g., reduction of surgical site infection) has so far
not been shown for any of the additional biocidal agents in alcohol-based hand rubs [79]. Taking into
account that there is no health benefit for any of these additional biocidal agents for the application
hand disinfection but a realistic potential to enhance the development of antibiotic resistance it
seems logical and responsible to prefer alcohol-based hand rubs without additional biocidal agents
as long as they have an equivalent user acceptability and efficacy for hand disinfection (“antiseptic
stewardship”) [77]. The Commission for Hospital Hygiene and Infection Control (KRINKO) at the
Robert Koch-Institute, Berlin, Germany, has therefore recommended that alcohol-based hand rubs
with persistent biocidal agents cannot be recommended [80].

Additional biocidal agents in alcohol-based skin antiseptics should also be reviewed.
Some products contain chlorhexidine, octenidine, povidone iodine, or benzalkonium chloride [81].
A proven health benefit (prevention of catheter-associated bloodstream infections and probably also
surgical site infections) has so far only been shown for the additional chlorhexidine [82–86]. Additional
octenidine may also have a health benefit for the prevention of catheter-associated bloodstream
infections [87]. No health benefit has been shown for additional benzalkonium chloride or povidone
iodine. For benzalkonium chloride at a low concentration there is even evidence that a persistent
antimicrobial effect on the skin over 48 h is lacking [88]. The use of chlorhexidine in alcohol-based skin
antiseptics seems reasonable despite some risks. The use of octenidine in alcohol-based skin antiseptics
may also be favourable although the evidence for a health benefit is sparse. Benzalkonium chloride in
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alcohol-based skin antiseptics does not have any health benefit but has some relevant risks including
antibiotic resistance development. It should be replaced [81].

For other types of applications such as surface disinfection, wound antisepsis, mucous membrane
antisepsis, or instrument disinfection, preference should be given to those biocidal agents without
or with a low selection pressure assuming that their antimicrobial activity, material compatibility,
and user safety is at least as good for the intended use. Other antimicrobial agents such as cold plasma
may be an alternative in the future [89].

9. Conclusions

Antibiotic resistance may occur after exposure of various Gram-negative species to sublethal
concentrations of some biocidal agents such as benzalkonium chloride, chlorhexidine or triclosan.
Their use as an antiseptic agent should be restricted to applications with a proven health benefit.
General preference should be given to biocidal agents without or with a low selection pressure
assuming that their antimicrobial activity, material compatibility, and user safety is at least as good for
the intended use.

Funding: This research received no external funding.
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