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Bacterial speciation is a fundamental evolutionary pro-
cess characterized by diverging genotypic and phenotypic  
properties. However, the selective forces that affect genetic 
adaptations and how they relate to the biological changes 
that underpin the formation of a new bacterial species  
remain poorly understood. Here, we show that the spore-
forming, healthcare-associated enteropathogen Clostridium 
difficile is actively undergoing speciation. Through  
large-scale genomic analysis of 906 strains, we demonstrate 
that the ongoing speciation process is linked to positive 
selection on core genes in the newly forming species that are 
involved in sporulation and the metabolism of simple dietary 
sugars. Functional validation shows that the new C. difficile 
produces spores that are more resistant and have increased 
sporulation and host colonization capacity when glucose 
or fructose is available for metabolism. Thus, we report  
the formation of an emerging C. difficile species, selected  
for metabolizing simple dietary sugars and producing high 
levels of resistant spores, that is adapted for healthcare-
mediated transmission.

The formation of a new bacterial species from its ancestor is 
characterized by genetic diversification and biological adaptation1–4. 
For decades, a polyphasic examination5 that relies on genotypic and 
phenotypic properties of a bacterium has been used to define and to 
discriminate between ‘species’. The bacterial taxonomic classifica-
tion framework has more recently used large-scale genome analy-
sis to incorporate aspects of a bacterium’s natural history, such as 
ecology6, horizontal gene transfer1, recombination2 and phylogeny3. 
Although a more accurate definition of a bacterial species can be 
achieved with whole-genome-based approaches, we still lack a fun-
damental understanding of how selective forces affect adaptation of 
biological pathways and phenotypic changes, leading to bacterial 
speciation. Here, we describe the genome evolution and biological 

changes during the ongoing formation of a new C. difficile species 
that is highly specialized for human transmission in the modern 
healthcare setting.

C. difficile is a strictly anaerobic, Gram-positive bacterial spe-
cies that produces highly resistant, metabolically dormant spores 
that are capable of rapid transmission between mammalian hosts 
through environmental reservoirs7. Over the past four decades,  
C. difficile has emerged as the leading cause of antibiotic-associated 
diarrhea worldwide, with a large burden on the healthcare setting7,8. 
To define the evolutionary history and genetic changes underpin-
ning the emergence of C. difficile as a healthcare-associated patho-
gen, we performed whole-genome sequence analysis of 906 strains 
isolated from humans (n = 761), animals (n = 116) and environmen-
tal sources (n = 29), with representatives from 33 countries and the 
largest proportion originating from the United Kingdom (n = 465) 
(Supplementary Fig. 1, Supplementary Table 1 and Supplementary 
Table 2; the data set is summarized visually at https://microreact.
org/project/H1QidSp14). Our collection was designed to compre-
hensively capture C. difficile genetic diversity9 and includes 13 high-
quality and well-annotated reference genomes (Supplementary 
Table 2). Robust maximum likelihood phylogeny based on 1,322 
concatenated single-copy core genes (Fig. 1a and Supplementary 
Table 3) illustrates the existence of four major phylogenetic groups 
within this collection. Bayesian analysis of population structure 
(BAPS) using concatenated alignment of 1,322 single-copy core 
genes corroborated the presence of the four distinct phylogenetic 
groupings (PG1–PG4) (Fig. 1a) that each harbor strains from dif-
ferent geographical locations, hosts and environmental sources, 
which indicates signals of sympatric speciation. Each phylogenetic 
group also harbors distinct clinically relevant ribotypes (RTs): PG1 
harbors RT001, RT002, RT014 ; PG2 harbors RT027 and RT244; 
PG3 harbors RT023 and RT017; and PG4 harbors RT078, RT045 
and RT033.
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The phylogeny was rooted using closely related species  
(C. bartlettii, C. hiranonis, C. ghonii and C. sordellii) as outgroups 
(Fig. 1a). This analysis indicated that three phylogenetic groups 
(PG1, PG2 and PG3) of C. difficile descended from the most diverse 
phylogenetic group (PG4). This was also supported by the fre-
quency of single-nucleotide polymorphism (SNP) differences in 
pairwise comparisons between strains of PG4 and each of the other 
PGs versus the level of pairwise SNP differences between compari-
sons of PG1, PG2 and PG3 to each other (Supplementary Fig. 2). 
Interestingly, bacteria from PG4 display distinct colony morpholo-
gies compared to bacteria from PG1, PG2 and PG3 when grown 
on nutrient agar plates (Supplementary Fig. 3), which suggests a 
link between C. difficile colony phenotype and genotype that distin-
guishes PG1, PG2 and PG3 from PG4.

Our previous genomic study using 30 C. difficile genomes indi-
cated an ancient, genetically diverse species that probaby emerged 
1 to 85 million years ago (ref. 10). We tested this estimate using our 
larger data set, and this indicated that the species emerged approxi-
mately 13.5 million years (12.7–14.3 million) ago. Using the same 
BEAST (Bayesian evolutionary analysis sampling trees)11 analysis 
on our substantially expanded collection, we estimate the most 
recent common ancestor of PG4 (using the RT078 lineage) arose 
approximately 385,000 (297,137–582,886) years ago. By contrast, 
the most recent common ancestor of PG1, PG2 and PG3 (using 
the RT027 lineage) arose approximately 76,000 (40,220–214,555) 
years ago. Bayesian skyline analysis reveals a population expan-
sion of PG1, PG2 and PG3 (using the RT027 lineage) around 1595 
ad, shortly before the emergence of the modern healthcare system 
in the eighteenth century (Supplementary Fig. 4). Together, these 
observations suggest that PG4 emerged prior to the other PGs and 
that the PG1, PG2 and PG3 population structure started to expand 
just prior to the implementation of the modern healthcare system12. 
We therefore refer to PG1, PG2 and PG3 as C. difficile ‘clade A’ and 
PG4 as C. difficile ‘clade B’.

To investigate genomic relatedness, we next performed pairwise 
average nucleotide identity (ANI) analysis (Fig. 1b). This analysis 
revealed high nucleotide identity (ANI > 95%) between PG1, PG2 
and PG3, which indicates that bacteria from these groups belong to 
the same species; however, the ANI between PG4 and any other PG 

was either less than the species threshold (ANI > 95%) or on the 
borderline of the species threshold (94.04%–96.25%) (Fig. 1b). To 
detect recombination events, FastGEAR analysis13 was performed 
on whole-genome sequences of 906 strains. Although analysis iden-
tified increased recombination within C. difficile clade A (PG1–
PG2, 1–102; PG1–PG3, 1–214; PG2–PG3, 1–96) (Supplementary 
Fig. 5) a restricted number of recombination events between  
C. difficile clade A and clade B was observed (PG1–PG4, 1–20; 
PG2–PG4, 1–25; PG3–PG4, 1–46). This analysis strongly indicates 
the presence of recombination barriers in the core genome that fur-
ther distinguishes the two C. difficile clades and could encourage 
sympatric speciation. Furthermore, accessory genome functional 
analysis also shows a clear separation between clade A and clade 
B (Supplementary Fig. 6 and Supplementary Tables 4,5). We also 
observe a higher number of pseudogenes in clade A than in clade 
B (Supplementary Fig. 7 and Supplementary Tables 6–11). Taken 
together, these results indicate different selection pressures on the 
genomes of C. difficile clades A and B.

In addition to reduced rates of recombination events, advanta-
geous genetic variants in a population driven by positive selective 
pressures, termed positive selection, are also a marker of specia-
tion6. We determined the Ka/Ks ratios (the ratio of the number of 
nonsynonymous subsitutions per nonsynonymous site (Ka) to the 
number of synonymous subsitutions per synonymous site (Ks)) and 
identified 172 core genes in clade A and 93 core genes in clade B that 
were positively selected (Ka/Ks > 1) (Fig. 2a and Supplementary 
Tables 12,13). In clade A, functional annotation and enrichment 
analysis identified positively selected genes involved in carbohy-
drate and amino acid metabolism, sugar phosphotransferase system 
(PTS), and spore coat architecture and spore assembly (Fig. 2b). By 
contrast, the sulfur relay system was the only enriched functional 
category of positively selected genes from clade B. Notably, 26% (45 
in total) of the positively selected genes in C. difficile clade A pro-
duce proteins that are directly involved in spore production, pres-
ent in the mature spore proteome14 or regulated by Spo0A (ref. 15) 
or its sporulation-specific sigma factors16 (Fig. 2c). By contrast, no 
positively selected genes are directly involved in spore production 
in C. difficile clade B; however, 22.5% (21 genes in total) are either 
present in the mature spore proteome or regulated by Spo0A or 
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its sporulation-specific sigma factors (Supplementary Fig. 8). The 
lack of overlap between sporulation-associated positively selected 
genes in the two lineages suggests a divergence of spore-mediated 
transmission functions. In addition, these results suggest that func-
tions that are important for host-to-host transmission have evolved  
in C. difficile clade A.

We found 20 positively selected genes (Supplementary Table 12) 
in clade A whose products are components of the mature spore14,15 
and could contribute to environmental survival17. For example, 
sodA (superoxide dismutase A), a gene that is associated with spore 
coat assembly, has three point mutations that are present in all 
clade A genomes but absent in clade B genomes (Supplementary 
Fig. 9). Spores that are derived from diverse C. difficile clades have 
wide variation in resistance to microbiocidal free radicals from gas 
plasma18. To investigate whether the phenotypic resistance proper-
ties of spores from the new lineage have evolved, we exposed spores 
from both clades to hydrogen peroxide, a commonly used health-
care environmental disinfectant17. Spores derived from clade A 
were more resistant to 3% (P = 0.0317) and 10% hydrogen peroxide 

(P = 0.0317) than spores from clade B, although there was no differ-
ence in survival at 30% peroxide, probably owing to the overpower-
ing bactericidal effect at this concentration (P = 0.1667) (Fig. 3a).

The master regulator of C. difficile sporulation, Spo0A, is under 
positive selection in C. difficile clade A only. Spo0A also controls 
other host colonization factors, such as flagella, and carbohydrate 
metabolism, potentially serving to mediate cellular processes to 
direct energy to spore production and host colonization, to facili-
tate host-to-host transmission15. Interestingly, the clade A genomes 
contain genes under positive selection that are involved in fructose 
metabolism (fruABC and fruK), glycolysis (pgk and pyk), sorbitol 
(CD630_24170) and ribulose metabolism (rep1), and conversion 
of pyruvate to lactate (ldh). To further explore the link between 
sporulation and carbohydrate metabolism in clade A, we analyzed 
positively selected genes using KEGG pathways19 and manual cura-
tion. Manual curation of key enriched pathways across the 172 posi-
tively selected core genes in C. difficile clade A identified a complete 
fructose-specific PTS pathway and identified 4 genes (30%, 4 out 
of 13) involved in anaerobic glycolysis during glucose metabolism  
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(Supplementary Fig. 10). Other genes that are associated with 
enriched PTS pathways include genes that are used for the cellu-
lar uptake and metabolism of mannitol, cellobiose, glucitol (also 
known as sorbitol), galactitol, mannose and ascorbate. Furthermore, 
comparative analysis of carbohydrate active enzymes (CAZymes)20 
identified a clear separation of CAZymes between C. difficile clade 
A and clade B (Supplementary Fig. 11 and Supplementary Table 
14). Together, these observations suggest a divergence of functions 
between two C. difficile clades linked to metabolism of a broad 
range of simple dietary sugars21.

The simple sugars glucose and fructose are increasingly used in 
Western diets characterized by consumption of high levels of pro-
cessed foods, sugars and fats21. Interestingly, trehalose, a disaccharide 

of glucose that is used as a food additive, has affected the emergence 
of some human virulent C. difficile variants22. Based on our genomic 
analysis, we reasoned that dietary glucose or fructose could dif-
ferentially impact host colonization by spores from C. difficile  
clade A or clade B. We therefore supplemented the drinking water 
of mice with glucose, fructose or ribose, and challenged with clade 
A or clade B strains. Ribose metabolic genes were not under positive 
selection, so this sugar was included as a control. Mice challenged 
with clade A spores exhibited higher bacterial load when exposed 
to dietary glucose (P = 0.048) or fructose (P = 0.0045) than clade B  
(Fig. 3b). No difference in bacterial load was observed between  
C. difficile clade A and clade B without supplemented sugars or 
when supplemented with ribose (P = 0.2709) (Fig. 3b).
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The infectivity and transmission of C. difficile within healthcare 
settings is facilitated by environmental spore density23,24. To deter-
mine the impact of simple sugar availability on spore production 
rates, we assessed the ability of the two lineages to form spores in 
basal defined medium (BDM) alone or supplemented with glucose, 
fructose or ribose. Although no difference was observed for either 
C. difficile clade A or clade B when supplemented with ribose (con-
trol) (P = 0.3095), C. difficile clade A strains exhibited increased 
spore production when supplemented with glucose (P = 0.0317) or 
fructose (P = 0.0317) (Fig. 3c). These results provide experimental 
validation and, together with our genomic predictions, suggest that 
enhanced host colonization and onward spore-mediated transmis-
sion with the consumption of simple dietary sugars is a feature of  
C. difficile clade A but not clade B.

The recent and rapid emergence of C. difficile as a significant 
healthcare pathogen has been attributed mainly to the genomic 
acquisition of antibiotic resistance and carbohydrate metabolic 
functions on mobile elements via horizontal gene transfer22,25. Here 
we show that these recent genomic adaptations have occurred in 
established, distinct evolutionary lineages, each with core genomes 
expressing unique, pre-existing transmission properties. We reveal 
the ongoing formation of a new species with biological and phe-
notypic properties consistent with a transmission cycle that was 
primed for human transmission in the modern healthcare sys-
tem (Fig. 3d). Indeed, different transmission dynamics and host 
epidemiology have also been reported for C. difficile clade A (027 
lineage26 and 017 lineage27) endemic in healthcare systems in dif-
ferent parts of the world, and the 078 lineage that probably enters 
the human population from livestock28–30. Furthermore, broad epi-
demiological screens of C. difficile present in the healthcare sys-
tem often highlight high abundances of C. difficile clade A strains; 
they represent 68.5% (USA), 74% (Europe) and 100% (Mainland 
China) of the infecting strains7,8,31,32. Thus, we report a link between  
C. difficile clade A speciation, adapted biological pathways and epi-
demiological patterns. In summary, our study elucidates how bacte-
rial speciation may prime lineages to emerge and transmit through 
a process that is accelerated by the modern human diet, the acquisi-
tion of antibiotic resistance or healthcare regimes.
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Methods
Collection of C. difficile strains. Laboratories worldwide were asked to send 
a diverse representation of their C. difficile collections to the Wellcome Sanger 
Institute. After receiving all shipped samples, the DNA extraction was performed 
batch-wise using the same protocol and reagents to minimize bias. Phenol–
chloroform was the preferred method for extraction as it provides a high DNA 
yield and intact chromosomal DNA.

The genomes of 382 strains designated as C. difficile by PCR ribotyping were 
sequenced and combined with our previous collection of 506 C. difficile strains, 13 
high-quality C. difficile reference strains and 5 publicly available C. difficile RT244 
strains; a total of 906 strains were analyzed in this study. This genome collection 
includes strains from humans (n = 761), animals (n = 116) and the environment 
(n = 29) that were collected from diverse geographic locations (United Kingdom, 
n = 465; Europe, n = 230; North America, n = 111; Australia, n = 62; Asia, n = 38). 
Details of all strains are listed in Supplementary Tables 1,2, including the  
European Nucleotide Archive (ENA) sample accession numbers. Metadata of this 
C. difficile collection have been made freely available through Microreact33 (https://
microreact.org/project/H1QidSp14).

Bacterial culture and genomic DNA preparation. C. difficile strains were 
cultured on blood agar plates for 48 h, inoculated into brain–heart infusion 
broth supplemented with yeast extract and cysteine, and grown overnight (16 h) 
anaerobically at 37 °C. Cells were pelleted, washed with PBS, and genomic DNA 
preparation was performed using a phenol–chloroform extraction as described 
previously34. All culturing of C. difficile took place in anaerobic conditions (10% 
CO2, 10% H2, 80% N2) in a Whitley DG250 workstation at 37 °C. All reagents and 
media were reduced for 24 h in anaerobic conditions before use.

DNA sequencing, assembly and annotation. Paired-end multiplex libraries were 
prepared and sequenced using the Illumina Hi-Seq platform with a fragment 
size of 200–300 bp and a read length of 100 bp, as described previously35,36. An in-
house pipeline developed at the Wellcome Sanger Institute (https://github.com/
sanger-pathogens/Bio-AutomatedAnnotation) was used for bacterial assembly and 
annotation. It consisted of de novo assembly for each sequenced genome using 
Velvet v1.2.10 (ref. 37), SSPACE v2.0 (ref. 38) and GapFiller v1.1 (ref. 39) followed by 
annotation using Prokka v1.5-1 (ref. 40). For the 13 high-quality reference genomes, 
strains Liv024, TL178, TL176, TL174, CD305 and Liv022 were sequenced using 
454 (Roche) and Illumina sequencing platforms, BI-9 and M68 were sequenced 
by using 454 and capillary sequencing technologies, with the assembled data 
for these eight strains improved to the ‘improved high quality draft’ genome 
standard, as described in ref. 41. Optical maps using the Argus Optical Mapping 
system were also generated for Liv024, TL178, TL176, TL174, CD305 and Liv022. 
The remaining strains are all contiguous and were all sequenced using 454 and 
capillary sequencing technologies, except for R20291, which also had Illumina data 
incorporated, and 630, which was sequenced using capillary sequence data alone.

Phylogenetic analysis, pairwise SNP distance analysis and ANI analysis. The 
phylogenetic analysis was conducted by extracting the nucleotide sequences of 1,322 
single-copy core genes from each C. difficile genome using Roary42. The nucleotide 
sequences were concatenated and aligned with MAFFT v7.20 (ref. 43). Gubbins44 was 
used to mask recombination from concatenated alignment of these core genes and 
a maximum-likelihood tree was constructed using RAxML v8.2.8 (ref. 45) with the 
best-fit model of nucleotide substitution (GTRGAMMA) calculated from ModelTest 
embedded in TOPALi v2.5 (ref. 46) and 500 bootstrap replicates. The phylogeny was 
rooted with a distance-based tree generated using Mash v2.0 (ref. 47),  
R package APE48 and genome assemblies of closely related species (C. bartlettii, 
C. hiranonis, C. ghonii and C. sordellii). All phylogenetic trees were visualized in 
iTOL49. Genomes of closely related C. difficile were downloaded from the National 
Center for Biotechnology Information (NCBI). Pairwise SNP distance analysis was 
performed on concatenated alignment of 1,322 single-copy core genes using SNP-
Dist (https://github.com/tseemann/snp-dists). ANI was analyzed by performing 
pairwise comparison of genome assemblies using MUMmer50.

Population structure and recombination analysis. Population structure based on 
concatenated alignment of 1,322 single-copy core genes of C. difficile was inferred 
using HierBAPS51 with one clustering layer and 5, 10 and 20 expected numbers 
of clusters (k) as input parameters. Recombination events across the whole-
genome sequences were detected by mapping genomes against a reference genome 
(National Collection of Type Cultures (NCTC) 13366; RT027) and using FastGear13 
with default parameters.

Functional genomic analysis. To explore the accessory genome and identify 
protein domains in a genome, we performed RPS-BLAST using the COG database 
(accessed February 2019)52. All protein domains were classified into different 
functional categories using the COG database52 and were used to perform 
discriminant analysis of principle components (DAPC)53 implemented in the R 
package Adegenet v2.0.1 (ref. 54). Domain and functional enrichment analysis was 
carried out using the one-sided Fisher’s exact test, with the P value adjusted using 
the Benjamini–Hochberg method in R v3.2.2.

CAZymes in a genome were identified using dbCAN v5.0 (ref. 55) (HMM 
database of carbohydrate active enzyme annotation). Best hits include hits with 
an E value <1 × 10−5 if alignment is >80 amino acids (aa), and hits with an E value 
<1 × 10−3 if alignment is <80 aa and alignment coverage is > 0.3. Best hits were 
used to perform DAPC53 implemented in the R package Adegenet v2.0.1 (ref. 54).

Functional annotation of positively selected genes was carried out using the 
Riley classification system56, KEGG Orthology57 and Pfam functional families58.

Analysis of selective pressures. The aligned nucleotide sequences of each 1,322 
single-copy core genes were extracted from Roary’s output. The ratio between 
the number of non-synonymous mutations (Ka) and the number of synonymous 
mutations (Ks) was calculated for the whole alignment and for the respective 
subsets of strains belonging to PG1, PG2 and PG3 (as a group) and PG4. The 
Ka/Ks ratio for each gene alignment was calculated with SeqinR v3.1. Ka/Ks > 1 
was considered the threshold for identifying genes under positive selection.

Pseudogenes analysis. Nucleotide annotations of genes within a genome within 
each phylogenetic group were mapped against the protein sequences of the 
reference genome for its phylogenetic group (PG1, NCTC 13307(RT012); PG2, 
SRR2751302 (RT244); PG3, NCTC 14169 (RT017); PG4, NCTC 14173 (RT078)) 
using TBLASTN as described previously59. Pseudogenes were called based on the 
following criteria: genes with an E value >1 × 10−30 and sequence identity <99%, 
and which are absent in 90% of members of a phylogenetic group. Genes in the 
reference genomes annotated as a pseudogene were also included in addition to 
genes in query genomes.

Analysis of estimated dates of C. difficile species and clade emergence. The 
aligned nucleotide sequences of each of the 222 core genes of C. difficile that are 
under neutral selection (Ka/Ks =) were extracted from Roary’s output. Gubbins44 
was used to mask recombination from concatenated alignment of these core 
genes and used as an input for the BEAST software package v2.4.1 (ref. 11). In 
BEAST, the MCMC chain was run for 50 million generations, sampling every 
1,000 states using the strict clock model (2.50 × 10−9 to 1.50 × 10−8 per site per 
year)10 and HKY four discrete gamma substitution model, each run in triplicate. 
Convergence of parameters was verified with Tracer v1.5 (ref. 60) by inspection of 
the effective sample sizes (which were greater than 200). LogCombiner was used 
to remove 10% of the MCMC steps discarded as burn-ins and combine triplicates. 
The resulting file was used to infer the time of divergence from the most recent 
common ancestor for C. difficile clade A and clade B. The Bayesian skyline plot was 
generated with Tracer v1.5 (ref. 60).

C. difficile growth in vitro on selected carbon sources. BDM61 was used as the 
minimal medium to which selected carbon sources (2 g l−1 of glucose, fructose or 
ribose from Sigma-Aldrich) were added. C. difficile strains were grown on CCEY 
agar (Bioconnections) for 2 d. Erlenmeyer flasks (125 ml) containing 10 ml of 
BDM with or without carbon sources were inoculated with C. difficile strains and 
incubated in anaerobic conditions at 37 °C with shaking at 180 rpm. After 48 h, 
spores were counted by centrifuging the culture to a pellet, carefully decanting the 
BDM and re-suspending in 70% ethanol for 4 h to kill vegetative cells. Following 
ethanol shock, spores were washed twice in PBS and plated in a serial dilution on 
YCFA media62 supplemented with 0.1% sodium taurocholate. Colony-forming 
units (representing germinated spores) were counted 24 h later. The experiment 
was performed three times independently for each strain. Clade A strains that 
were used were TL178 (RT002/PG1), TL174 (RT015/PG1), R20291 (RT027/
PG2), CF5 (RT017/PG3) and CD305 (RT023/PG3). Clade B strains that were used 
were MON024 (RT033), CDM120 (RT078), WA12 (RT291), WA13 (RT228) and 
MON013 (RT127). Data are presented using GraphPad Prism v7.03.

C. difficile spore resistance to disinfectant. Spores were prepared by adapting a 
previous protocol18. In brief, C. difficile strains were streaked on CCEY media, the 
cells were collected from the plates 48 h later and exposed to 70% ethanol for 4 h 
to kill vegetative cells. The solution was then centrifuged, ethanol was decanted 
and the spores were washed once in 5 ml sterile saline (0.9% w/v) solution before 
being suspended in 5 ml of saline (0.9% w/v) with Tween20 (0.05% v/v). Spore 
suspensions (300 µl, at a concentration of approximately 106 spores) were exposed 
to 300 µl of 3%, 10% and 30% hydrogen peroxide solutions (Fisher Scientific) 
for 5 min in addition to 300 µl PBS. The suspensions were then centrifuged, 
hydrogen peroxide or PBS was decanted and the spores were washed twice with 
PBS. Washed spores were plated on YCFA media with 0.1% sodium taurocholate 
to stimulate spore germination and colony-forming units were counted 24 h later. 
The experiment was performed three times independently for each strain. Clade 
A strains that were used were TL178 (RT002/PG1), TL174 (RT015/PG1), R20291 
(RT027/PG2), CF5 (RT017/PG3) and CD305 (RT023/PG3). Clade B strains that 
were used were MON024 (RT033), CDM120 (RT078), WA12 (RT291), WA13 
(RT228) and MON013 (RT127). Data are presented using GraphPad Prism v7.03.

In vivo C. difficile colonization experiment. Five female 8-week-old C57BL/6 
mice were given 250 mg l−1 clindamycin (Apollo Scientific) in drinking water. After 
5 d, clindamycin treatment was interrupted and 100 mM of glucose, fructose or 
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ribose was added to mouse drinking water for the rest of the experiment;  
no sugars were given to control mice. After 3 d, mice were infected orally with 
6 × 103 spore per mouse of C. difficile R20291 (RT027) or M120 (RT078) strain. 
Fecal samples were collected from all mice before infection to check for pre-
existing C. difficile contamination. Spore suspensions were prepared as described 
above18. After 16 h, fecal samples were collected from all mice to determine viable 
C. difficile cell counts by serial dilution and plating on CCEY agar supplemented 
with 0.1% sodium taurocholate. The mean values for five mice are presented from 
one representative experiment, which was repeated once with similar results. Data 
are presented using GraphPad Prism version 7.03. Ethical approval for mouse 
experiments was obtained from the Wellcome Sanger Institute.

Reporting Summary. Further information on research design is available in the 
Life Sciences Reporting Summary linked to this article.

Data availability
Genomes have been deposited in the European Nucleotide Archive. Accession 
codes are listed in Supplementary Table 1. The 13 C. difficile reference isolates 
(Supplementary Table 2) are publicly available from the NCTC and the annotation 
of these genomes are available from the Host-Microbiota Interactions Laboratory 
(HMIL; www.lawleylab.com), Wellcome Sanger Institute.

Code availability
No custom code was used.
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