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ABSTRACT: Quaternary ammonium compounds (QACs) are active
ingredients in over 200 disinfectants currently recommended by the U.S.
EPA for use to inactivate the SARS-CoV-2 (COVID-19) virus. The
amounts of these compounds used in household, workplace, and industry
settings has very likely increased, and usage will continue to be elevated
given the scope of the pandemic. QACs have been previously detected in
wastewater, surface waters, and sediments, and effects on antibiotic
resistance have been explored. Thus, it is important to assess potential
environmental and engineering impacts of elevated QAC usage, which may
include disruption of wastewater treatment unit operations, proliferation of
antibiotic resistance, formation of nitrosamine disinfection byproducts, and
impacts on biota in surface waters. The threat caused by COVID-19 is
clear, and a reasonable response is elevated use of QACs to mitigate spread
of infection. Exploration of potential effects, environmental fate, and technologies to minimize environmental releases of QACs,
however, is warranted.

■ INTRODUCTION

During the SARS-CoV-2 (COVID-19) pandemic, many
disinfection practices, including hand washing and surface
cleaning, have changed to limit disease transmission. These
practices will continue to evolve as people return to work and
resume other activities, leading to more routine and thorough
disinfection to minimize virus transmission. These new
cleaning routines and habits may continue past the time
when SARS-CoV-2 is an urgent threat. Quaternary ammonium
compounds (QACs) are known to be effective at inactivating
enveloped viruses,1,2 such as SARS-CoV-2, and the U.S.
Environmental Protection Agency’s (EPA) List N: Disinfectants
for Use Against SARS-CoV-2 has 430 products, of which 216
contain QACs as the active ingredient,3 with specifics shown in
Figure 1. Of the 18 virucidal products for surface disinfection
listed by the Association for Applied Hygiene in Germany,
three contain QACs.4 It has been recently noted, however, that
additional evaluation of the effectiveness of QACs against
coronaviruses is needed.5

Before the pandemic, QACs, including benzalkyl dimethy-
lammonium compounds (BACs or benzalkonium com-
pounds), alkyltrimethylammonium compounds (ATMACs),
and dialkyldimethylammonium compounds (DADMACs)
were already widely used in the U.S.; i.e., all of these were
designated high production volume chemicals by the EPA and
the Organization for Economic Cooperation and Development

with over 1 million pounds per year manufactured or imported.
In Europe, however, uses of QACs have recently been limited
in food products and consumer hand and body washes.6 Past
reviews have focused on the detection, fate, impacts, and
regulation of QACs,6−9 but usage has likely increased in
various settings during the pandemic, including hospitals, long-
term care facilities, households, and workplaces considered
essential (like grocery stores and food processing plants).
Increased handwashing with antibacterial soaps will also lead
to more use. After the ban on triclosan, BACs are used as
replacements in many over-the-counter antibacterial hand
soaps, particularly because BACs were not disallowed
ingredients by the U.S. Food and Drug Administration.10,11

As economies begin to open, and disinfection protocols for
office, retail, manufacturing, and other industrial workspaces
are required, usage of products containing QACs will likely
continue to increase. There may also be usage in heavily
trafficked areas such as outdoor common spaces and public
transit systems. This usage is understandable given the ubiquity
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of QACs in disinfectant wipes and surface spray cleaners and
the current recommendations to use these compounds to limit
virus transmission. The increased consumption of QACs,
however, will lead to increased loads to wastewater treatment
systems and to the environment. Thus, it is important to
identify (i) resulting concentrations from elevated loads and
their environmental fate, (ii) potential impacts to wastewater
treatment infrastructure and aquatic systems, and (iii) the
processes that lead to degradation/removal. This is not to say
that use should be restricted at this time; rather we are noting
that, in addition to more data regarding effectiveness, ancillary
environmental impacts need exploration along with means to
ameliorate identified risks. Coupled with effectiveness data,
evaluation of environmental risks is important information for
developing a hierarchy for disinfectant product usage
recommendations that maximize efficacy and minimize
environmental and other risks.
The majority of QACs used ultimately enter wastewater

treatment plants (WWTPs) indicating this is one location
where effects could manifest. QACs are present in the effluent
water and sorbed to sludge, which provides two pathways to
the environment if biosolids are used as a soil amendment.7 If
use increases in outdoor spaces or in transit systems,
stormwater runoff could also carry QACs.12 Therefore,
loadings to WWTPs, discharges to surface waters receiving
effluent, and direct inputs into the environment are likely to
increase in the immediate and foreseeable future. Potential
concerns regarding increased usage include disruption of
treatment plant operation and impacts on the spread of
antibiotic resistance.13−16 Toxicity to aquatic organisms is of
concern, as is the formation of N-nitrosamines via reaction

with chloramines. The following sections provide an overview
of QAC history and environmental fate and explore potential
impacts of increased QAC loadings to both wastewater
treatment systems and aquatic environments, identify sit-
uations where increased monitoring of QAC levels may be
needed, and propose potential ways to reduce these impacts.

■ HISTORY AND USAGE
QACs were first introduced as derivatives of hexamethylene
tetramine, and the bactericidal properties of these salts were
explored in several publications from 1915 to 1916.17−20 It was
not until 1935 that the broader use of QACs began with the
development of benzalkyl dimethylammonium chloride
(ADBAC or benzalkonium chloride or BAC), in which the
alkyl group can be a chain containing eight to 18 carbon
atoms.21 The new surface disinfectant was marketed as
Zephirol (sold in the U.S. as Zephiran, Roccal, or BTC).22

By the 1940s, QACs were increasingly used as surface-active
agents and detergent disinfectants. Proposed and actual
applications ranged from disinfection of utensils and glassware
to prevent disease transmission in public eateries and military
mess halls; to curbing infection in military settings and
hospitals, in particular to combat drug resistant strains of
bacteria; to the dairy industry to wash udders and to disinfect
milking machines, processing and pasteurization equipment,
and dairy tanks and cans used to transport milk.23 In addition
to BACs, the other major classes of QACs are the ATMACs
and DADMACs. Other historically commonly used QACs
include Cetavlon or CTAB (cetyltrimethylammonium bro-
mide) and DTDMAC (ditallow dimethylammonium chloride),
which was a common fabric softener ingredient until voluntary
phase-out and replacement by a less hydrophobic, more readily
biodegradable surfactant.9,22

Demand for QACs has increased over the decades, and they
continue to be widely used chemicals, chemical mixtures, and
additives in a variety of industrial, agricultural, clinical, and
consumer products and applications.7,9,24 In 1945, the U.S.
produced 3 million pounds of surface-active agents; by 1993,
that number reached 7787 million pounds.23 U.S. production
of QACs was estimated to be approximately 100 million
pounds in 1979 with DADMACs accounting for the largest
production volume due to use in fabric softeners and oil-based
drilling muds. The estimated consumption of the other major
class of QACs, BACs, was 20−25 million pounds. Approx-
imately 80% of the market for BACs was in biocides, sanitizers,
and disinfectants, with the remainder being in hair
conditioners in shampoos and cream rinses, emulsifying
agents, and constituents in deodorizers.25 On the basis of
U.S. EPA Chemical Data Reporting in 2015, national aggregate
production volumes ranged from 10 to 50 million pounds each
for several BAC, ATMAC, and DADMAC mixtures.26

QACs are some of the most extensively used classes of
biocides, disinfectants, sanitizers, antimicrobials, and
cleaners.7,9,24,27 Because of their broad-spectrum antimicrobial
properties against bacteria, fungi, and viruses, QACs are
applied in household, food-processing, agriculture, and clinical
settings to control the spread of environmentally transmitted
pathogens.6,27 Many commercial cleaning products marketed
as antibacterial and personal care products including
antibacterial soaps and alcohol-free hand sanitizers contain
QACs as active ingredients. The carbon chain influences the
antimicrobial activity of QACs. Generally, alkyl chain lengths
from C12 to C16 exhibit greater antimicrobial activity, and twin-

Figure 1. Active ingredients in products on the EPA List N as of June
21, 2020. The benzalkyl dimethylammonium compounds (BACs) are
benzalkyl dimethyl or ethylbenzalkyl dimethyl ammonium com-
pounds or a combination of the two. The dialkyldimethylammonium
compounds (DADMACs) are predominantly dioctyl, octyl decyl, or
didecyl dimethylammonium chloride or a combination of these. Eight
of the products containing only DADMAC, 14 containing only BACs,
and four with both also contain ethanol or isopropanol. A peroxy acid
is present for 25% of the products contaning hydrogen perioxde.
Other disinfectants include citric acid (10), dodecylbenzenesulfonic
acid + lactic acid (2), ethanol (5), glycolic acid (3) 1,2-hexandiol (1),
hydrochloric acid (5), isopropanol (1), lactic acid (6), octanoic acid
(1), peroxyacetic acid (8), phenolic compounds (11), potassium
peroxymonosulfate (3), silver ion (2), sodium dichloroisocyanurate
(4), sodium dichloro-S-triazinetrione (2), and thymol (4).
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chained compounds such as DADMACs demonstrate better
bioactivity toward some Gram-positive bacteria compared to
BACs.27,28 Due to their amphiphilic nature, QACs act as
detergents or surface-active agents against microorganisms.
QACs target bacterial cell membranes through electrostatic
interactions between the positively charged headgroup and
negatively charged cytoplasmic membrane, adsorption, and
then permeation of side chains into the intramembrane
region.28 The lipid layer of enveloped viruses makes them
sensitive to the hydrophobic activity of QACs.5,27

■ ENVIRONMENTAL INPUTS AND FATE
QACs have been detected worldwide not just in domestic
wastewater and sludge but also in treated effluent, surface
water, and sediment.29−32 It is anticipated that the majority of
QAC applications leads to their eventual release (∼75%) into
sewers and WWTPs.24,25 Though QACs are removed from the
liquid stream during conventional wastewater treatment via a
combination of sorption to biosolids and biodegradation, these
compounds are still detected in aquatic environments,
especially at higher concentrations in locations downstream
of the discharge of municipal WWTP effluents and hospital
and industrial (e.g., laundry and food processing) effluents.32,33

The reason elevated environmental concentrations are found
despite ∼90% removal from the liquid stream in wastewater
treatment is because QACs are high production volume
chemicals; consequently, as the global appetite for QACs
grows,34 these compounds will increasingly enter the environ-
ment through point source pollution, land application of
biosolids, or treated municipal and industrial effluent
discharges. Concentrations of QACs detected worldwide in
surface water and wastewater effluent range from less than 1
μg/L to approximately 60 μg/L, and QACs have been found to
be up to 10 times these levels in influent waste-
water.7,24,32,35−39 A study in Germany detected average total
C12-BAC concentrations of 4.7 and 7.7 μg/L in wastewater
samples collected directly from two neighborhood street
sanitary sewers.40 On the basis of product surveys in
households, the researchers tentatively linked BAC detection
to use in surface disinfectants, soaps, and/or washing and
cleaning agents. BACs are the most frequently found QAC
group worldwide in municipal or industrial wastewater
effluents at levels up to the mg/L range in indirect discharge
wastewater and effluent from hospitals.32,33,37,41 Ruan et al.
detected total concentrations of homologues of ATMAC,
BAC, and DADMAC ranging from 1.12 to 505 mg/kg dry
weight in municipal biosolids throughout China.29 Of the
different homologues, C8- to C18-DADMACs, C12- to C18-
ATMACs, and C12- to C18-BACs are identified as the most
frequently detected in the environment.8,42−44 We note that
while there are many reports of BAC detection there is
minimal information on the ethylbenzalkyl dimethylammo-
nium compounds that are components of many of the BAC-
containing products in Figure 1, and the environmental levels
of these compounds merit study. Benzethonium chloride is
another QAC active ingredient in a few of the hard-surface
disinfectant products on the EPA list, which has a paucity of
environmental data and might warrant further study.
There are three main attenuation mechanisms for QACs in

the aquatic environment: photolysis, biodegradation, and
sorption to suspended particles followed by sedimentation.
Generally, QACs have been considered stable or relatively slow
to degrade by hydrolysis, photolysis, or microbial activity.

While the ethylbenzalkyl dimethylammonium compounds have
not received specific attention, it is expected that their fate
would be similar to other QACs. The photochemical
processing of QACs in the environment has been explored
in a limited capacity. Although some QACs contain
chromophoric functional groups that would make them
susceptible to direct photodegradation, many lack these groups
or weakly absorb light in the solar spectrum. QACs like BACs
and DADMACs have previously exhibited relatively long
photolysis half-lives in aqueous and soil environments.45,46

Recent work exploring indirect photolysis of QACs including
two BAC homologues, a DADMAC, an ATMAC, and
benzethonium chloride in surface waters estimated half-lives
from 12 to 94 days.47

Most studies of biodegradation of QACs have been
performed using activated sludge or enrichment cultures, but
there is some evidence for degradation over a period of 5−10
days of ATMACs and BACs by marine bacteria.48−54 From
previous studies relying on enrichment and isolation of QAC-
resistant bacteria, species that degrade and even mineralize
QACs to carbon dioxide have been identified.24,28,55−57 These
include strains of Pseudomonas, Xanthomonas, Aeromonas,
Stenetrophomonas, and Achromobacter.48,57−60 Biotransforma-
tion pathways have also been elucidated for several QACs by
bacterial isolates. A few studies have reported the microbial
degradation of BAC by several pure cultures (Pseudomonas
nitroreducens, Aeromonas hydrophila, and Bacillus niabensis) to
benzyldimethylamine by dealkylating amine oxidase and
related enzymes.28 Other identified enzymes include tetradecyl
trimethylammonium bromide monooxygenase, a Rieske-type
oxygenase oxyBAC, as well as three genes encoding oxygenases
that metabolize naturally occurring QACs.48 Work is needed,
however, to assess if such degradation occurs in aquatic
systems by complex microbial communities.
Due to their strong affinity to organic and inorganic

particles, a large fraction of QACs is removed from surface
waters by sedimentation. Consequently, QACs have been
identified in surface sediment samples from rivers in Austria,
WWTP effluent-impacted estuaries in New York City, and
sewage-impacted lakes in Minnesota with total QAC
concentrations between 1 ng/g (μg/kg) and 74 μg/g (mg/
kg).30,39,41,61,62 Concentrations of BACs and DADMACs are
typically much higher than concentrations of ATMACs with
C12-BAC (3.6 μg/g), C14-BAC (7.2 μg/g), C18-DADMAC (26
μg/g), and C22-ATMAC (6.8 μg/g) reaching the highest
recorded levels of individual QACs. Surface sediment samples
from effluent-impacted estuaries in New York City were found
to contain especially high QAC concentrations, with median
total QAC concentration about 25 times higher than the
median sum of polycyclic aromatic hydrocarbons at the same
location.30 QACs have also been quantified in dated sediment
cores from lakes in Minnesota and from urban estuaries near
New York City, Hong Kong, and Tokyo.39,62−64 A common
pattern to all these sediment cores, which represent a temporal
archive of contaminant input into aquatic environments, is
positive detection of QACs since the 1950s and peak
concentrations (0.7−400 μg/g total QAC) corresponding to
depositions between the 1960s and the 1980s. Sediment
concentrations decrease afterward, likely due to implementa-
tions of improved domestic and industrial wastewater treat-
ment, for most QACs and locations, except for certain short-
chain DADMACs and long-chain ATMACs. Increased current
and future usage in response to the COVID-19 pandemic,
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however, could lead to increasing levels in sediments. Despite
being detected worldwide at high levels in sediments,
conclusive data about the bioavailability of QACs once sorbed
are scarce. So far only Li et al. were able to show that total
masses of BACs and ATMACs were reduced by 39%−55% in
two dated sediment cores from the same location taken 12
years apart, indicating in situ degradation of ATMACs and
BACs (particularly those with short chains), while DADMACs
were concluded to be recalcitrant.63

Another route of QACs to the environment is inputs to soils
via amendments of biosolids. Mulder et al. predict environ-
mental concentrations of QACs in biosolids-amended soil
ranging from high μg/kg to mg/kg, but this may arise from
animal manure instead of municipal biosolids.65 While
biodegradation in soil is possible, it has not been specifically
studied and will be a function of bioavailability, and QACs are
known to sorb to clays.65 Because biosolids retain QACs,
potential effects of land application of biosolids with QAC
levels higher than those previously used need attention.

■ POTENTIAL IMPACTS
Effects on Wastewater Treatment Plant Operations.

During activated sludge treatment, QACs are removed by
sorption to organic-rich substrates and biomass and/or
biodegradation. Several QAC classes, particularly BACs and
ATMACs, are known to be degraded by certain micro-
organisms during aerobic biological wastewater treat-
ment.37,49,66−68 The process, however, is dependent on QAC
concentration, structure, microbial consortia, and treatment
conditions. If the concentration of QACs is too high, the
presence of QACs proves inhibitory to microbial activity and
even detrimental to the microorganisms.50,56,57,69 If the
concentration of QACs is too low, the QAC may no longer
serve as an attractive carbon source for the microorganisms.
In general, QACs are inhibitory to activated sludge at levels

(e.g., 10−40 mg/L) higher than currently found in treatment
plants.70 Nitrification processes, however, are more susceptible
to inhibition than carbonaceous biochemical oxygen demand
removal.71 The noncompetitive nitrification inhibition coef-
ficient was reported to be 1.5 mg/L for BAC,72 which is only
about a factor of 3 higher than average wastewater influent
concentration.7,24,32,37 In full-scale systems, the majority of
QACs are either biodegraded or sorbed during the activated
sludge process prior to the nitrification step.37 QACs are
thought to sorb first to solids, and then, after readily available
substrates are utilized, QACs are biodegraded. Using longer
retention times via extended aeration or attached growth
systems has been recommended to increase BAC removal,71

but levels higher than 2 mg/L have been shown to affect
performance and increase biofouling in membrane bioreac-
tors.73 If given sufficient time to adapt, biological nitrogen
removal systems can adjust to increasing QAC loadings,74 but
sudden increases in QAC inputs could cause operational
problems.
BAC can be transformed under nitrate reducing (deni-

trification) conditions,75 and nitrate was still reduced to
dinitrogen at BAC concentrations up to 25 mg/L. At higher
BAC concentrations nitrous oxide was formed. Specifically,
nitrite reduction is the step most inhibited by BAC during
denitrification.76 Lower temperatures lead to increased
inhibition by BAC. Overall, increased monitoring of QACs
in WWTPs performing nitrification/denitrification may be
required if system operations appear to be affected.

While degradation of QACs occurs in aerated activated
sludge systems, a major removal mechanism is sorption to
biosolids with 38%−96% of the QACs mass ultimately residing
in the digester solids.77 Sorption of QACs occurs faster than
aerobic biodegradation, which means that QACs end up being
transferred to biosolids handling treatment processes, often
anaerobic digestion.7,9,25,29,41,65,78 This is particularly an issue
for longer chained compounds. While biodegradation has been
identified as a potential sink for QACs during wastewater
treatment, sorption could reduce QAC availability to micro-
organisms that might degrade them. Moreover, there has been
little experimental evidence that QACs containing alkyl and
benzyl groups are mineralized under anaerobic treatment
conditions, and research has suggested that biodegradation of
QACs under anaerobic conditions is limited.7,79 Inhibitory
impacts to digester functioning (as measured by biogas
production) can vary by compound and concentration.79,80

Tezel et al. reported that QACs were more inhibitory to
methanogenesis (a process carried out by Archaea) than to
acidogenesis (a process carried out by Bacteria).81 It was
postulated that this finding could be due to the makeup of the
cell wall in methanogens or due to their reliance on the proton
motive force instead of substrate level phosphorylation for
ATP generation. The authors tested benzalkyl, dodecyl,
dioctyl, and octyldecyl dimethylammonium compounds and
found that the QACs with shorter alkyl chain lengths, i.e., the
more hydrophilic compounds, were more inhibitory. The IC50
values were approximately 25 mg/L or greater (equivalent to
833 mg/kg assuming 3% solids in a digester). Longer-term
batch-fed studies revealed that initial methanogenesis inhib-
ition by a QAC mixture was eventually overcome, suggesting
that microbial communities can adapt and/or QACs become
less bioavailable over time. The QACs were not biodegraded
under anaerobic conditions indicating that QACs present in
anaerobic digesters will remain with biosolids that are land
applied.
The type and source of sludge will likely affect how

inhibitory QACs are to anaerobic digestion. Flores et al.
reported an IC50 value of BAC in digester sludge closer to 13
mg/L.82 As opposed to Tezel et al., who used municipal
anaerobic digester sludge, the inoculum sludge was granular
sludge taken from an upflow anaerobic sludge blanket (USAB)
reactor treating pharmaceutical wastewater. They also operated
a lab-scale UASB reactor fed BAC at the IC50 dose, and it
failed. However, they noted concentrations of BAC in full-scale
digesters have been found above this level. Thus, real-world
digesters with high levels must have acclimated over time. A
wide range of sludge concentrations have been reported (0.1−
300 mg/kg total suspended solids), with up to 25 mg/kg for
individual compounds at the highest reported levels.7 Thus,
increasing QAC concentrations could lead to one of two
results: digester failure or further acclimation via changes in
microbial community structure, potentially to communities
that harbor more antibiotic resistance (see below). He et al.
confirmed that BAC altered the diversity and microbial
community composition of both Bacteria and Archaea in
anaerobic digesters.83 Monitoring of QACs and associated
resistance genes in anaerobic digester systems may be
warranted.

Antibiotic Resistance. QACs kill bacteria by gross
membrane disruption, and the impacts of QACs on selecting
for antibiotic resistance in pure cultures has been well
documented and reviewed in detail elsewhere.6,24,84 This
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selection is not of concern for chlorine-based disinfectants or
hydrogen peroxide, which decompose more rapidly. Perhaps of
greatest concern is the proliferation of pathogenic multidrug
resistant bacteria (“superbugs”), following exposure to QACs.
Indeed, methicillin-resistant Staphylococcus aureus (MRSA)
strains exposed to BAC as well as benzethonium chloride had
increased resistance to oxacillin and β-lactam antibiotics.85

Salmonella enterica and Escherichia coli O157 exposed to BAC
also developed cross-resistance to antibiotics.86

Of great interest following the heightened use of QACs
during the COVID-19 pandemic will be what effects QACs
have on antibiotic resistance in mixed microbial communities,
i.e., the microbial communities present in natural and
engineered environments. Exposure to BAC at subinhibitory
levels in an aerobic sediment microbial community altered
microbial community composition and increased resistance to
BAC as well as penicillin G, tetracycline, and ciprofloxacin.57

The increased resistance was attributed to the selection for
bacteria that harbored efflux pumps and other resistance
mechanisms. Follow-up research on the aerobic sediment
communities revealed that BAC selected for BAC resistance
and antibiotic resistance in multiple sediment strains, including
Archromobacter sp., Citrobacter freundii sp., Klebsiella michi-
ganesis sp., and Pseudomonas aeruginosa sp.87 Resistance was
due to multiple mechanisms, including mutations and
overexpression of multidrug efflux pumps. Another key finding
was that antibiotic resistance can arise due to coresistance, i.e.,
acquisition of two colocated genes, one that confers resistance
to BAC and one that confers resistance to an antibiotic. Of
note, though, is that increased resistance was not universal. Of
the seven antibiotics tested, resistance increased to three
antibiotics. A similar finding was observed in a study on a
mixed microbial community taken from a freshwater lake used
for drinking water.88 BAC selected for resistance to the
fluoroquinolone antibiotic ciprofloxacin at only 0.1 μg/L and
also selected for resistance to sulfamethoxazole. The resistance
of the community to other antibiotics, though, declined after
exposure to BAC. Collectively, these studies indicate that BAC
is not a universal selective agent for antibiotic resistance, but
rather it will alter the antibiotic resistance profiles of microbial
communities. If this effect will be better or worse from a public
health standpoint depends on the clinical need for the
particular antibiotics that are less effective after BAC exposure.
Multiple studies revealed that BAC increased resistance to
ciprofloxacin, which is currently a top 5 prescribed antibiotic,
and was the most abundant antibiotic found in biosolids in the
U.S., an indication of its high usage.89 As concentrations of
BAC increase, it is possible that BAC will promote more
clinically relevant antibiotic resistance. As noted in the above
sections, a majority of BAC passes through anaerobic digesters.
Yet, to the best of our knowledge, no research has been
conducted to elucidate the impacts of BAC on selection of
antibiotic resistance in anaerobic digesters. Previous work on
the broad-spectrum antimicrobials triclosan and triclocarban
revealed their selection for antibiotic resistance genes as well as
functional cross-resistance to antibiotics in anaerobic diges-
tion.90−92 The QACs DTDMAC and CTAB were also found
to correlate with higher frequencies of intI1 and antibiotic
resistance genes.93 Class 1 integrons often contain qac genes
which confer resistance to QACs via efflux.13−16 This is an
especially interesting phenomenon because integrons allow
bacteria to acquire other antibiotic resistance genes via
horizontal gene transfer.15 Thus, increased QAC concen-

trations could select for bacteria that harbor qac genes and
integrons/antibiotic resistance genes, ultimately leading to
more multidrug resistant bacteria. Another unintended
consequence of more frequent QAC usage, especially in food
preparation and clinical settings, is increasing tolerance or
resistance to a particular QAC and development of cross-
tolerance to other QAC formulations among pathogenic
bacteria.94 The impact of QACs on antibiotic resistance,
including impacts on horizontal gene transfer rates and
multidrug resistance, in environments that will be exposed to
higher QAC concentrations should be further researched,
including anaerobic digestion and soils amended with
municipal biosolids.

Disinfection Byproducts: N-Nitrosamines. The last
treatment step in wastewater treatment is often disinfection.
Even when disinfection is performed with chlorine, there are
still chloramines formed from reaction with ammonia present,
even in nitrified effluents. Chloramines are known to react with
organic amines to form nitrosamines.95 N-Nitrosodimethyl-
amine (NDMA), a known carcinogen, receives the most
attention. Gray and black waters containing various cleaning
and bathing products have been shown to produce N-
nitrosamines upon exposure to chloramine.96 While likely
responsible for only a fraction of the production, QACs do
form NDMA with low molar yields (∼0.03%−0.3%).97 The
yield is not reduced upon purification, indicating that trace
tertiary amines are likely not the precursors, as seen for
polymers treated to remove tertiary amines.98 NDMA,
however, is only a small fraction of the total production of
N-nitrosamines.99 Recent work has demonstrated that while
NDMA yield for a BAC and an ATMAC are minimal, total N-
nitrosamine molar yields range from 0.7% (pH 6) to 5% (pH
8) upon treatment with chloramine.100 While release of N-
nitrosamines into the environment is undesirable, they are
subject to decay processes. The production of elevated levels of
N-nitrosamines from increased levels of QACs upon chlor-
(am)ination of wastewater is likely to be of greatest concern
for direct or indirect potable reuse scenarios, where there is
potential for human exposure to the N-nitrosamines. In these
situations, increased monitoring of QAC levels and N-
nitrosamine formation is likely needed.

Toxicity to Aquatic and Soil Organisms. A more in-
depth overview of the toxicity of QACs on aquatic organisms
can be found in recently published reviews.7,101 QACs are
algistatic and bacteriostatic at concentrations ranging from 0.5
to 5 mg L−1 and microbiocidal at concentrations from 10 to 50
mg/L.27 Acute toxic effects on marine bacteria of the
Vibrionaceae family, however, have already been observed at
high μg/L concentrations (EC50 = 57−630 μg/L).54,102 The
largest number of toxicity studies with QACs over the past 20
years were performed with various algae species. Typical acute
toxicity thresholds (EC50−96h) were between 0.1 and 1.8
mg/L.33,103−109 Large variations were observed between
different algae species, as well as for different endpoints and
QAC structures. Overall, the toxicity of QACs toward algae
increased with exposure time and with chain lengths of
ATMACs and BACs but not with chain lengths of
DADMACs.103,105 Aquatic organisms also frequently studied
are protozoa, daphnids, and fish. Protozoa (Tetrahymena
thermophila and Spirostomum ambiguum) appear less sensitive
than algae with EC50-24h of 1.5−10 mg/L and LC50-24h of
0.2−0.9 mg/L, while Daphnia magna are especially sensitive to
QACs with average EC50-24h of 0.18 mg/L and EC50-48h of
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0.03 mg/L.33,54,102,104,110,111 Chronic toxicity thresholds for
aquatic species were only reported for the green algae
Dunaliella bardawil (IC50-10d = 0.78 mg/L), Daphnia
magna (EC50-21d = 1.0 μg/L), and Ceriodaphnia dubia
(EC50-7d = 0.04 mg/L).107,111 Lethal toxicity of ATMACs
toward rainbow trout increased with chain length, and LC50-
24h of 0.6−41 mg/L were reported.110 Interestingly, chronic
effects on cell lines from rainbow trout appear to be in the
same range with EC50 or IC50 values of 0.3−2.7 mg/L.104,112

Chen et al. as well as van Wijk et al. studied the effects of
adding sediments, clays, or dissolved organic matter to their
toxicity tests and found that the freely dissolved fraction of
QACs is predominantly responsible for causing toxic effects,
likely because sorbed QACs are not as bioavailable.104,109 For
similar reasons, toxicity thresholds are substantially higher for
benthic organisms and terrestrial and aquatic plants.104,113−116

It is assumed that QACs sorbed to sediments or soils are not
bioavailable, and thus, only the freely dissolved fraction in pore
water causes toxic effects in benthic organisms and plants.
Performing a systematic risk assessment for QACs is difficult

due to the lack of chronic toxicity data and limited number of
exposure measurements in surface waters. The available
toxicity and exposure data, however, indicate that high ratios
of predicted environmental concentrations (PEC) to predicted
no-effect concentrations (PNEC) could be reached for aquatic
systems, whereas PEC/PNEC ratios are unlikely to be elevated
for sediments and soils. A similar conclusion has been reached
previously by Kreuzinger et al.33 A crude estimate of PNEC
was made here based on acute toxicity data from studies with
Daphnia magna, which appears to be the most sensitive aquatic
organism toward adverse effects by QACs. Using the geometric
mean of all EC50 values available and an assessment factor of
1000, a conservative PNEC estimate would amount to
approximately 100 ng/L. Considering average reported surface
water concentrations on the order of 70 ng/L for single QAC
compounds and 280 ng/L for total QAC concentra-
tions,32,33,117 PEC/PNEC ratio estimates range from 0.7 to
2.8 with a large degree of uncertainty. It is currently difficult to
assess whether aquatic organisms are at risk by the levels of
QACs seen today or expected in the future. Better chronic
toxicity data, studies on mixture toxicity, and more
comprehensive exposure measurements, especially for effluent
dominated systems or those near chemical manufacturing and
medical facilities, are needed.

■ IMPLICATIONS AND INTERVENTIONS
The amount of disinfectants being used has risen, with one
manufacturer reporting production in May 2020 equivalent to
the entire year of 2019,118 and U.S. sales of disinfectant wipes
were 146% higher than the same period last spring.119 While it
is unclear if this level will be sustained, some companies that
produce hygiene and cleaning products anticipate lasting
changes in consumer behavior and increased demand after the
COVID-19 pandemic begins to wane.119,120 The global surface
disinfectant market has a forecasted 9.1% compound annual
growth rate from 2020 to 2027.121 Thus, it should be
anticipated that the amounts of QACs used and released to
the environment will increase. Because QACs are biologically
active compounds, there are several potential environmental
impacts that need to be considered due to elevated usage
during the COVID-19 pandemic, and these need to be
balanced with product efficiency for usage recommendations.
Moreover, these unanticipated impacts could persist or

heighten if human behaviors (hand washing, surface
disinfection) and product purchasing patterns are altered in
the long term. With all biologically active compounds, there
are both potential acute toxicity and chronic low-dose exposure
issues. If there are short-term, high concentration doses sent to
a WWTP, for example, from cleaning of a hospital or building,
functional processes such as activated sludge basins or
anaerobic digesters could be negatively impacted by the slug
of QACs entering the treatment system. Because QACs are
surfactants, an influx of the compounds could contribute to or
exacerbate existing issues with foaming in WWTPs, which
might temporarily disrupt or reduce treatment efficiency.122

More likely, increasing QAC concentrations steadily over time
would lead to changes in microbial communities that may
harbor more antibiotic resistance both in treatment systems
and in the environment, especially downstream of WWTPs.
Implications of elevated QAC levels in surface waters,
sediments, and soils due to biosolids applications indicate a
need for further testing of chronic toxicity for aquatic, benthic,
and soil organisms to better evaluate potential impacts that
may need to be addressed in the current unusual situation.
Overall, increased monitoring of QAC levels in WWTP
effluents and biosolids is indicated, and assessment of levels in
surface waters (especially in cases of (in)direct potable reuse)
and soils receiving these effluents and biosolids, respectively,
should be considered as well. A better understanding of the
ecologically relevant risks associated with low-level QAC
exposure is required.
The processes that are known to facilitate degradation of

QACs also indicate potential opportunities to improve
treatment, limit environmental releases, and minimize environ-
mental impacts. Extended aeration (longer SRT)71 or aeration
with pure oxygen39 or membrane systems could lead to better
removal and degradation of the QACs. Treatment wetlands,
which facilitate extended biodegradation, photolysis, and
removal via particle settling would likely lead to QAC
removal.123−125 Pyrolysis of biosolids to generate biochar
would very likely lead to QAC removal from biosolids.126,127

Various advanced oxidation processes, including O3/H2O2,
UV/chlorine, and O3/HOCl, have been shown to degrade
QACs and eliminate the toxicity to bacteria or algae.128−131

The threat posed by the COVID-19 pandemic is real and
apparent, and priority needs to be given to protecting the
health and safety of people in their homes and when in public.
As part of the response to the pandemic, QAC usage will
increase. Environmental engineers and scientists must be aware
of and monitor the fate of QACs so that other aspects of
society including wastewater treatment are not compromised.
Ironically, fighting the virus could lead to increased infections
from antibiotic resistant bacteria if elevated QAC exposure
jolts the spread of antibiotic resistance. Fortunately, we cannot
claim to be surprised by increases in QACs in our engineered
and environmental systems, but we must now pay due
diligence to monitor their presence, note concentrations of
concern, and develop and implement technologies to
remediate their presence when needed.
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Quaternary Ammonium Compounds and Anionic Organic Com-
pounds in the Aquatic Environment: Elimination and Biodegradability
in the Closed Bottle Test Monitored by LC-MS/MS. Chemosphere
2008, 72 (3), 479−484.
(50) Bergero, M. F.; Lucchesi, G. I. Degradation of Cationic
Surfactants Using Pseudomonas Putida A ATCC 12633 Immobilized
in Calcium Alginate Beads. Biodegradation 2013, 24 (3), 353−364.
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(108) Elersek, T.; Ženko, M.; Filipic,̌ M. Ecotoxicity of Disinfectant
Benzalkonium Chloride and Its Mixture with Antineoplastic Drug 5-
Fluorouracil towards Alga Pseudokirchneriella Subcapitata. PeerJ 2018,
6, No. e4986.
(109) van Wijk, D.; Gyimesi-van den Bos, M.; Garttener-Arends, I.;
Geurts, M.; Kamstra, J.; Thomas, P. Bioavailability and Detoxification
of Cationics: I. Algal Toxicity of Alkyltrimethyl Ammonium Salts in
the Presence of Suspended Sediment and Humic Acid. Chemosphere
2009, 75 (3), 303−309.
(110) Sandbacka, M.; Christianson, I.; Isomaa, B. The Acute
Toxicity of Surfactants on Fish Cells, Daphnia Magna and Fish − A
Comparative Study. Toxicol. In Vitro 2000, 14, 61−68.
(111) Lavorgna, M.; Russo, C.; D’Abrosca, B.; Parrella, A.; Isidori,
M. Toxicity and Genotoxicity of the Quaternary Ammonium
Compound Benzalkonium Chloride (BAC) Using Daphnia Magna
and Ceriodaphnia Dubia as Model Systems. Environ. Pollut. 2016, 210,
34−39.
(112) Sańchez-Fortuń, S.; Llorente, M. T.; Castaño, A. Genotoxic
Effects of Selected Biocides on RTG-2 Fish Cells by Means of a
Modified Fast Micromethod Assay. Aquat. Toxicol. 2005, 73 (1), 55−
64.
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